Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(x\ne1\)
Ta có:
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)
Đặt \(\frac{x^2}{x-1}=a\)
Khi đó pt đã cho trở thành:
\(a^3-3a^2+3a-2=0\)
\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)
Theo cách đặt: \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)
a) ĐKXĐ: \(x\ge8\)
Ta có:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)
+) \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)
+) \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)
\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)
Vaayh pt có 1 nghiệm là x=9
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:
* Với \(x>-2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)
* Với \(x< -2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)
Do đó pt có nghiệm duy nhất \(x=-2\)
c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)
\(\Rightarrow a^4+b^4=2\)
Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)
Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\left(x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
(+) x - 2 = 0
<=> x = 2 (nhận)
(+) \(1-3\sqrt{x+2}=0\)
\(\Leftrightarrow9\left(x+2\right)=1\)
\(\Leftrightarrow x=\dfrac{1}{9}-2\)
\(\Leftrightarrow x=-\dfrac{17}{9}\) (loại)
a) Bình phương lên thôi
Đk: \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Rightarrow\left(x-1\right)+\left(5x-1\right)-2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x-2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(5x-1\right)}=3x\)
\(\Leftrightarrow4\left(x-1\right)\left(5x-1\right)=9x^2\) (vì \(x\ge1\))
\(\Leftrightarrow11x^2-24x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{11}\end{matrix}\right.\)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
Bài 2:
b)\(x^3-x^2-x=\frac{1}{3}\)
\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)
\(\Leftrightarrow3x^3=3\left(x^2+x+\frac{1}{3}\right)\)
\(\Leftrightarrow3x^3=3x^2+3x+1\)
\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)\(\Leftrightarrow\sqrt[3]{4}x=x+1\)
\(\Leftrightarrow\sqrt[3]{4}x-x=1\)\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x+1\right)=0\)
Ok...
\(3\left(x^2-3x+2\right)+\sqrt{3}\left(\sqrt{x^4+x^2+1}-\sqrt{3}\right)=0\)
\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{x^4+x^2-2}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)
\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{\left(x-1\right)\left(x^3+x^2+2x+2\right)}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)