Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza
3,
đặt \(\hept{\begin{cases}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=a^2\\y^2+z^2=b^2\\z^2+x^2=c^2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{a^2+c^2-b^2}{2}\\y^2=\frac{b^2+a^2-c^2}{2}\\z^2=\frac{b^2+c^2-a^2}{2}\end{cases}}}\)
\(\Leftrightarrow M=\frac{a^2+c^2-b^2}{2\left(y+z\right)}+\frac{b^2+a^2-c^2}{2\left(z+x\right)}+\frac{c^2+b^2-a^2}{2\left(x+y\right)}\)
áp dụng bunhia ta có:
\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\\\left(y^2+z^2\right)\left(1+1\right)\ge\left(y+z\right)^2\\\left(z^2+x^2\right)\left(1+1\right)\ge\left(z+x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2\ge\left(x+y\right)^2\\2b^2\ge\left(y+z\right)^2\\2c^2\ge\left(z+x\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{2}a\ge x+y\\\sqrt{2}b\ge y+z\\\sqrt{2}c\ge z+x\end{cases}}}\)
\(\Rightarrow M\ge\frac{a^2+c^2-b^2}{\sqrt{2}b}+\frac{a^2+b^2-c^2}{\sqrt{2}c}+\frac{c^2+b^2-a^2}{\sqrt{2}a}=\frac{1}{\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}-b+\frac{a^2}{c}+\frac{b^2}{c}-c+\frac{c^2}{a}+\frac{b^2}{a}-a\right)\)\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-a-b-c\right)=\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{6}{\sqrt{2}}\)
Lời giải:
Vì \(xy+yz+xz=5\Rightarrow x^2+5=x^2+xy+yz+xz\)
\(\Leftrightarrow x^2+5=(x+y)(x+z)\)
\(\Rightarrow \sqrt{6(x^2+5)}=\sqrt{6(x+y)(x+z)}\)
Áp dụng BĐT AM-GM:
\(\sqrt{6(x+y)(x+z)}=\frac{\sqrt{6}}{2}.2\sqrt{(x+y)(x+z)}\leq \frac{\sqrt{6}}{2}(x+y+x+z)\)
\(\Leftrightarrow \sqrt{6(x^2+5)}\leq \frac{\sqrt{6}}{2}(2x+y+z)\)
Thực hiện tương tự với các hạng tử còn lại suy ra:
\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}\leq \frac{\sqrt{6}}{2}(4x+2y+4z)=2\sqrt{6}(x+y+z)\)
\(\Rightarrow \frac{3x+3y+3z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}}\geq \frac{3(x+y+z)}{2\sqrt{6}(x+y+z)}=\frac{3}{2\sqrt{6}}\)
Vậy min bằng \(\frac{3}{2\sqrt{6}}\)
Dấu bằng xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)
Từ giả thiết \(xy+yz+zx=5\)
ta có \(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\)
Áp dụng BĐT AM-GM , ta có
\(\sqrt{6\left(x^2+5\right)}=\sqrt{6\left(x+y\right)\left(z+x\right)}\le\frac{3\left(x+y\right)+2\left(z+x\right)}{2}=\frac{5x+3y+2z}{2}\)
CM tương tự ta được \(\sqrt{6\left(y^2+5\right)}\le\frac{3x+5y+2z}{2};\sqrt{z^2+5}\le\frac{x+y+2z}{2}\)
Cộng zế zới zế BĐt trên ta đc
\(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}\le\frac{9x+9y+6z}{2}\)
\(=>P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{x^2+5}}\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2}{3}\)
=> \(GTNN\left(P\right)=\frac{2}{3}khi\left(x=y=1;z=2\right)\)
Ta có \(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}=\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}\)\(+\sqrt{6\left(z+x\right)\left(z+y\right)}\)
\(\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(x+y\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}\le\frac{9x+9y+6z}{2}=\frac{3}{2}\)\(\left(3x+3y+2z\right)\)
\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\ge\frac{2}{3}\)
dấu "=" xảy ra \(\Leftrightarrow x=y=1;z=2\)
Vậy \(P_{min}=\frac{2}{3}\Leftrightarrow x=y=1;z=2\)
Bài 2:
b)\(x^3-x^2-x=\frac{1}{3}\)
\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)
\(\Leftrightarrow3x^3=3\left(x^2+x+\frac{1}{3}\right)\)
\(\Leftrightarrow3x^3=3x^2+3x+1\)
\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)\(\Leftrightarrow\sqrt[3]{4}x=x+1\)
\(\Leftrightarrow\sqrt[3]{4}x-x=1\)\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x+1\right)=0\)
Ok...