K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Bài 2:

b)\(x^3-x^2-x=\frac{1}{3}\)

\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)

\(\Leftrightarrow3x^3=3\left(x^2+x+\frac{1}{3}\right)\)

\(\Leftrightarrow3x^3=3x^2+3x+1\)

\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)

\(\Leftrightarrow4x^3=\left(x+1\right)^3\)\(\Leftrightarrow\sqrt[3]{4}x=x+1\)

\(\Leftrightarrow\sqrt[3]{4}x-x=1\)\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

 

8 tháng 12 2016

c)\(x^4+2x^3-6x^2+4x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x+1\right)=0\)

Ok...

13 tháng 10 2019

I am grade 5

16 tháng 9 2019

Khai  triển nó ra,ta có:

\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)

Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(\Sigma x\cdot\left(y+z\right)\)

Rút gọn dc như vậy rồi chị làm nốt ạ

23 tháng 5 2017

Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza 

23 tháng 5 2017

vẻ vang gì 100% sai

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

20 tháng 7 2017

câu 1 khó ghê,anh mình chỉ còn mỗi câu 1 thôi

3,

đặt \(\hept{\begin{cases}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=a^2\\y^2+z^2=b^2\\z^2+x^2=c^2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{a^2+c^2-b^2}{2}\\y^2=\frac{b^2+a^2-c^2}{2}\\z^2=\frac{b^2+c^2-a^2}{2}\end{cases}}}\)

\(\Leftrightarrow M=\frac{a^2+c^2-b^2}{2\left(y+z\right)}+\frac{b^2+a^2-c^2}{2\left(z+x\right)}+\frac{c^2+b^2-a^2}{2\left(x+y\right)}\)

áp dụng bunhia ta có:

\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\\\left(y^2+z^2\right)\left(1+1\right)\ge\left(y+z\right)^2\\\left(z^2+x^2\right)\left(1+1\right)\ge\left(z+x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2\ge\left(x+y\right)^2\\2b^2\ge\left(y+z\right)^2\\2c^2\ge\left(z+x\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{2}a\ge x+y\\\sqrt{2}b\ge y+z\\\sqrt{2}c\ge z+x\end{cases}}}\)

\(\Rightarrow M\ge\frac{a^2+c^2-b^2}{\sqrt{2}b}+\frac{a^2+b^2-c^2}{\sqrt{2}c}+\frac{c^2+b^2-a^2}{\sqrt{2}a}=\frac{1}{\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}-b+\frac{a^2}{c}+\frac{b^2}{c}-c+\frac{c^2}{a}+\frac{b^2}{a}-a\right)\)\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-a-b-c\right)=\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{6}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Lời giải:

Vì \(xy+yz+xz=5\Rightarrow x^2+5=x^2+xy+yz+xz\)

\(\Leftrightarrow x^2+5=(x+y)(x+z)\)

\(\Rightarrow \sqrt{6(x^2+5)}=\sqrt{6(x+y)(x+z)}\)

Áp dụng BĐT AM-GM:

\(\sqrt{6(x+y)(x+z)}=\frac{\sqrt{6}}{2}.2\sqrt{(x+y)(x+z)}\leq \frac{\sqrt{6}}{2}(x+y+x+z)\)

\(\Leftrightarrow \sqrt{6(x^2+5)}\leq \frac{\sqrt{6}}{2}(2x+y+z)\)

Thực hiện tương tự với các hạng tử còn lại suy ra:

\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}\leq \frac{\sqrt{6}}{2}(4x+2y+4z)=2\sqrt{6}(x+y+z)\)

\(\Rightarrow \frac{3x+3y+3z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}}\geq \frac{3(x+y+z)}{2\sqrt{6}(x+y+z)}=\frac{3}{2\sqrt{6}}\)

Vậy min bằng \(\frac{3}{2\sqrt{6}}\)

Dấu bằng xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

28 tháng 6 2020

Từ giả thiết \(xy+yz+zx=5\)

ta có \(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\)

Áp dụng BĐT AM-GM , ta có

\(\sqrt{6\left(x^2+5\right)}=\sqrt{6\left(x+y\right)\left(z+x\right)}\le\frac{3\left(x+y\right)+2\left(z+x\right)}{2}=\frac{5x+3y+2z}{2}\)

CM tương tự ta được \(\sqrt{6\left(y^2+5\right)}\le\frac{3x+5y+2z}{2};\sqrt{z^2+5}\le\frac{x+y+2z}{2}\)

Cộng zế zới zế BĐt trên ta đc

\(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}\le\frac{9x+9y+6z}{2}\)

\(=>P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{x^2+5}}\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2}{3}\)

=> \(GTNN\left(P\right)=\frac{2}{3}khi\left(x=y=1;z=2\right)\)

28 tháng 6 2020

Ta có \(\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}=\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}\)\(+\sqrt{6\left(z+x\right)\left(z+y\right)}\)

\(\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(x+y\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}\le\frac{9x+9y+6z}{2}=\frac{3}{2}\)\(\left(3x+3y+2z\right)\)

\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\ge\frac{2}{3}\)

dấu "=" xảy ra \(\Leftrightarrow x=y=1;z=2\)

Vậy \(P_{min}=\frac{2}{3}\Leftrightarrow x=y=1;z=2\)