Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022
pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)
<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)
<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)
Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)
Có \(\sqrt{6a+1}-a=-1\)
<=> \(\sqrt{6a+1}=a-1\)
=> \(6a+1=a^2-2a+1\)
<=> \(a^2-2a-6a+1-1=0\)
<=>\(a^2-8a=0\) <=>a(a-8)=0
=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)
阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0
=>luôn t/m với mọi x.
1/ \(\dfrac{5}{3}\le x\le\dfrac{7}{3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x-5}=a>0\\\sqrt{7-3x}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=2\\17-6x=2b^2+3\\6x-7=2a^2+3\end{matrix}\right.\)
Mặt khác theo BĐT Bunhiacốpxki:
\(a+b=\sqrt{3x-5}+\sqrt{7-3x}\le\sqrt{\left(1+1\right)\left(3x-5+7-3x\right)}=2\)
\(\Rightarrow0< a+b\le2\)
Ta được hệ pt:
\(\left\{{}\begin{matrix}a^2+b^2=2\\\left(2b^2+3\right).a+\left(2a^2+3\right)b=2+8ab\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=2\\2ab^2+3a+2a^2b+3b-8ab-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-2\\2ab\left(a+b\right)+3\left(a+b\right)-8ab-2=0\end{matrix}\right.\)
\(\Rightarrow\left(\left(a+b\right)^2-2\right)\left(a+b\right)+3\left(a+b\right)-4\left(a+b\right)^2+6=0\)
\(\Leftrightarrow\left(a+b\right)^3-4\left(a+b\right)^2+\left(a+b\right)+6=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=-1< 0\left(l\right)\\a+b=2\\a+b=3>2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow a+b=2\) , dấu "=" xảy ra khi và chỉ khi:
\(3x-5=7-3x\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
2/ ĐKXĐ: \(x\ne\pm2\)
\(\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-\left(\dfrac{15}{x^2-4}+5\right)=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-5.\left(\dfrac{x^2-1}{x^2-4}\right)=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{x^2-1}{x^2-4}\right)-4\left[\left(\dfrac{x^2-1}{x^2-4}\right)-\left(\dfrac{x+1}{x-2}\right)^2\right]=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)-4\left(\dfrac{x+1}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)
\(\Leftrightarrow\left(\dfrac{x-1}{x+2}-\dfrac{4\left(x+1\right)}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}=\dfrac{4\left(x+1\right)}{x-2}\\\dfrac{x-1}{x+2}=\dfrac{x+1}{x-2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=4\left(x^2+3x+2\right)\\x^2-3x+2=x^2+3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+15x+6=0\\6x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5+\sqrt{17}}{2}\\x=\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)
ĐK: 2x - 1 > 0 và 18 - 13x + 2x2 > 0
Bình phương 2 vế của PT ta được:
2x - 1 = (2x2 - 13x + 18)2
<=> 2x - 1 = 4x4 + 169x2 + 324 - 52x3 + 72x2 - 468x
<=> 4x4 - 52x3 + 241x2 - 470x + 325 = 0
<=> (4x4 - 20x3) - (32x3 - 160x2) + (81x2 - 405x) - (65x + 325) = 0
<=> 4x3.(x - 5) - 32x2.(x - 5) + 81x.(x - 5) - 65.(x - 5) = 0
<=> (x - 5).(4x3 - 32x2 + 81x - 65) = 0
<=> x - 5 = 0 hoặc 4x3 - 32x2 + 81x - 65 = 0
+) x - 5 = 0 => x = 5
+) 4x3 - 32x2 + 81x - 65 = 0
<=> (4x3 - 10x2) - (22x2 - 55x) + (26x - 65) = 0
<=> 2x2.(2x - 5) - 11x(2x - 5) + 13(2x - 5) = 0
<=> (2x - 5) (2x2 - 11x + 13) = 0
<=> 2x - 5 = 0 hoặc 2x2 - 11x + 13 = 0
Bạn tự giải tiếp nhé....
\(6x^2+13x-5=0\)
\(\Leftrightarrow6x^2-2x+15x-5=0\)
\(\Leftrightarrow2x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-5\\3x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=\frac{1}{3}\end{cases}}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-5}{2};\frac{1}{3}\right\}\)