\(6x^2+13x-5=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(6x^2+13x-5=0\)

\(\Leftrightarrow6x^2-2x+15x-5=0\)

\(\Leftrightarrow2x\left(3x-1\right)+5\left(3x-1\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-5\\3x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=\frac{1}{3}\end{cases}}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-5}{2};\frac{1}{3}\right\}\)

22 tháng 7 2017

\(PT\Leftrightarrow4x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=-3x^3\)

\(\Leftrightarrow x+2=\sqrt[3]{-3}x\)

\(\Leftrightarrow x\left(1+\sqrt[3]{3}\right)=-2\Leftrightarrow x=-\dfrac{2}{1+\sqrt[3]{3}}\)

2 tháng 5 2017

ý đề ra là tìm min nha mn

9 tháng 1 2018

https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022

20 tháng 7 2017

X=15:2:6

20 tháng 7 2017

bạn làm theo cách nào

6 tháng 10 2019

pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)

<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)

<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)

\(\sqrt{6a+1}-a=-1\)

<=> \(\sqrt{6a+1}=a-1\)

=> \(6a+1=a^2-2a+1\)

<=> \(a^2-2a-6a+1-1=0\)

<=>\(a^2-8a=0\) <=>a(a-8)=0

=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)

9 tháng 10 2019

阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0

=>luôn t/m với mọi x.

NV
11 tháng 1 2019

1/ \(\dfrac{5}{3}\le x\le\dfrac{7}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x-5}=a>0\\\sqrt{7-3x}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=2\\17-6x=2b^2+3\\6x-7=2a^2+3\end{matrix}\right.\)

Mặt khác theo BĐT Bunhiacốpxki:

\(a+b=\sqrt{3x-5}+\sqrt{7-3x}\le\sqrt{\left(1+1\right)\left(3x-5+7-3x\right)}=2\)

\(\Rightarrow0< a+b\le2\)

Ta được hệ pt:

\(\left\{{}\begin{matrix}a^2+b^2=2\\\left(2b^2+3\right).a+\left(2a^2+3\right)b=2+8ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=2\\2ab^2+3a+2a^2b+3b-8ab-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-2\\2ab\left(a+b\right)+3\left(a+b\right)-8ab-2=0\end{matrix}\right.\)

\(\Rightarrow\left(\left(a+b\right)^2-2\right)\left(a+b\right)+3\left(a+b\right)-4\left(a+b\right)^2+6=0\)

\(\Leftrightarrow\left(a+b\right)^3-4\left(a+b\right)^2+\left(a+b\right)+6=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=-1< 0\left(l\right)\\a+b=2\\a+b=3>2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow a+b=2\) , dấu "=" xảy ra khi và chỉ khi:

\(3x-5=7-3x\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
11 tháng 1 2019

2/ ĐKXĐ: \(x\ne\pm2\)

\(\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-\left(\dfrac{15}{x^2-4}+5\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-5.\left(\dfrac{x^2-1}{x^2-4}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{x^2-1}{x^2-4}\right)-4\left[\left(\dfrac{x^2-1}{x^2-4}\right)-\left(\dfrac{x+1}{x-2}\right)^2\right]=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)-4\left(\dfrac{x+1}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}-\dfrac{4\left(x+1\right)}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}=\dfrac{4\left(x+1\right)}{x-2}\\\dfrac{x-1}{x+2}=\dfrac{x+1}{x-2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=4\left(x^2+3x+2\right)\\x^2-3x+2=x^2+3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2+15x+6=0\\6x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5+\sqrt{17}}{2}\\x=\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

15 tháng 10 2015

ĐK: 2x - 1 > 0 và 18 - 13x + 2x> 0

Bình phương 2 vế của PT ta được:

2x - 1 = (2x2 - 13x + 18)2

<=> 2x - 1 = 4x4 + 169x2 + 324 - 52x3 + 72x- 468x

<=> 4x- 52x+ 241x2 - 470x + 325 = 0 

<=> (4x- 20x3) - (32x- 160x2) + (81x- 405x) - (65x + 325) = 0

<=> 4x3.(x - 5) - 32x2.(x - 5) + 81x.(x - 5) - 65.(x - 5) = 0

<=> (x - 5).(4x- 32x2 + 81x - 65) = 0 

<=> x - 5 = 0 hoặc 4x- 32x2 + 81x - 65 = 0 

+) x - 5 = 0 => x = 5

+) 4x- 32x2 + 81x - 65 = 0

<=> (4x3 - 10x2) - (22x- 55x) + (26x - 65) = 0

<=> 2x2.(2x - 5) - 11x(2x - 5)  + 13(2x - 5) = 0 

<=> (2x - 5) (2x- 11x + 13) = 0 

<=> 2x - 5 = 0 hoặc 2x- 11x + 13 = 0 

Bạn tự giải tiếp nhé....