Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
\(2=\sqrt{4}>\sqrt{3}\)
\(6=\sqrt{36}< \sqrt{41}\)
\(7=\sqrt{49}>\sqrt{47}\)
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
a,\(\left(\sqrt{6}-\sqrt{10}\right)\sqrt{4+\sqrt{15}}=\sqrt{6}.\sqrt{4-\sqrt{15}}-\sqrt{10}.\sqrt{4+\sqrt{15}}\)
=\(\sqrt{24+6\sqrt{15}}-\sqrt{40+10\sqrt{15}}=\sqrt{\left(\sqrt{15}+3\right)^2}-\sqrt{\left(\sqrt{15}+5\right)^2}\)
=\(\sqrt{15}+3-\sqrt{15}-5=-2\)
b,\(\left(\sqrt{3}+\sqrt{30}\right)\sqrt{10-\sqrt{41-4\sqrt{10}}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40-2\sqrt{40}+1}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{\left(\sqrt{40}-1\right)^2}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40}+1}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{11-2\sqrt{10}}=\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{\left(\sqrt{10}-1\right)^2}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)=9\sqrt{3}\)
2,\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}\left(1-\sqrt{a}\right)-\sqrt{a}+4}{1-a}\right)\)
\(A=\left(\frac{a+\sqrt{a}-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}-a-\sqrt{a}+4}{1-a}\right)=\left(\frac{\sqrt{a}+2}{\sqrt{a}+1}\right).\left(\frac{1-a}{4-a}\right)\)
\(A=\frac{\sqrt{a}-2}{\sqrt{a}+1}.\frac{a-1}{a-4}=\frac{\sqrt{a}-1}{\sqrt{a}+2}\)
b, ̣để \(A=\frac{1}{2}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}+2}=\frac{1}{2}\Leftrightarrow2\sqrt{a}-2=\sqrt{a}+2\Leftrightarrow\sqrt{a}=4\Leftrightarrow a=16\left(t.m\right)\)
Bạn oi bài 2 hàng A thú 2 phải là \(\frac{\sqrt{a}-2}{\sqrt{a}+1}\) mình nhầm
Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
a) Ta có : \(5>2\Rightarrow\sqrt{5}>\sqrt{2}\)
b) Vì \(8>5\Rightarrow\sqrt{8}>\sqrt{5}\Rightarrow2\sqrt{2}>5\)
c) VÌ \(-32>-45\Rightarrow-\sqrt{32}>-\sqrt{45}\Rightarrow-4\sqrt{2}>-\sqrt{5}\)
d) Vì \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Leftrightarrow2\sqrt{3}< 3\sqrt{2}\)
a) \(2^2=4\)
\(\sqrt{3^2}=3\)
\(4>3\Rightarrow\) \(2>\sqrt{3}\)
b) \(6^2=36\)
\(\sqrt{41^2}=41\)
\(36< 41\Rightarrow6< \sqrt{41}\)
Bài này: sao lại lớp 9 nhỉ; lớp 7 có rồi mà