Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(-19\right)+5+\left(-8\right)+19+\left(-3\right).\left(-2\right)^3\)
\(\left(-19\right)+5+\left(-8\right)+19+\left(-3\right).\left(-8\right)\)
\(\left(-19\right)+5+\left(-8\right)+19+24\)
\(\left(-14\right)+11+24\)
\(\left(-3\right)+24=21\)
b/ \(\left(-5\right)^3-\left(3^3+4\right).\left(-2\right)+\left(3-27\right):4\)
\(\left(-125\right)-\left(27+4\right).\left(-2\right)+\left(3-27\right):4\)
\(\left(-125\right)-\left(31\right).\left(-2\right)+\left(-24\right):\text{4}\)
\(\left(-125\right)-\left(-62\right)+\left(-6\right)\)
\(\left(-63\right)+\left(-6\right)=-69\)
c/ \(\left[504-\left(5^2.8+70\right):3^2+6\right]:\left(-20\right)\)
\(\left[504-\left(25.8+70\right):9+6\right]:\left(-20\right)\)
\(\left[504-270:9+6\right]:\left(-20\right)\)
\(\left[504-30+6\right]:\left(-20\right)\)
\(480:\left(-20\right)=-24\)
d/ \(\left(-7\right)-\left[\left(-19\right)+21\right].\left(-3\right)-\left[32+\left(-7\right)\right]\)
\(\left(-7\right)-2.\left(-3\right)-25\)
\(\left(-7\right)-\left(-6\right)-25\)
\(\left(-1\right)-25=-26\)
\(\)
Ta có:
\(20A=\frac{20\left(20^{19}+1\right)}{20^{20}+1}=\frac{20^{20}+20}{20^{20}+1}=\frac{20^{20}+1+19}{20^{20}+1}=\frac{20^{20}+1}{20^{20}+1}+\frac{19}{20^{20}+1}=1+\frac{19}{20^{20}+1}\)
\(20B=\frac{20\left(20^{20}+1\right)}{20^{21}+1}=\frac{20^{21}+20}{20^{21}+1}=\frac{20^{21}+1+19}{20^{21}+1}=\frac{20^{21}+1}{20^{21}+1}+\frac{19}{20^{21}+1}=1+\frac{19}{20^{21}+1}\)
Vì 2020+1<2021+1
\(\Rightarrow\frac{19}{20^{20}+1}>\frac{19}{20^{21}+1}\)
\(\Rightarrow1+\frac{19}{20^{20}+1}>1+\frac{19}{20^{21}+1}\)
\(\Rightarrow20A>20B\)
\(\Rightarrow A>B\)
Ta dùng bất đẳng thức\(\frac{a}{b}<\frac{a+n}{b+n}\left(n\ne0\right)\)
Ta có \(B=\frac{10^{20}+1}{10^{21}+1}<\frac{10^{20}+1+9}{10^{21}+1+9}<\frac{10^{20}+10}{10^{21}+10}<\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\)
\(<\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(A>B\)
Ta có:\(B=\frac{10^{20}+1}{10^{21}+1}< 1\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
=> A > B
Kết quả số hơi to đấy,ở chỗ mình thì bài này làm như 1 bài rút gọn lại biểu thức nhìn cho đơn giản hơn thôi
\(A=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(B=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Mà \(19^{21}-7>19^{20}-8\)
=> \(A>B\)