Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a: =>5/42-x=11/13-15/28+11/13=421/364
=>x=-1193/1092
b: =>\(\dfrac{7}{2}-2x=7+\dfrac{6}{5}-3-\dfrac{2}{5}-1-\dfrac{4}{5}=3\)
=>2x=1/2
=>x=1/4
c: =>|2x-1/3|=-1/3(vô lý)
d: =>2x-1=-3
=>2x=-2
hay x=-1
e: =>2x=16
hay x=8
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a)
\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)
\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)
\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)
b)
\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)
\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)
\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)
c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)
d)
\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)
\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)
\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)
\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)
\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)
\(\left(\frac{1}{2}\right)^5\times x=\left(\frac{1}{2}\right)^7\)
\(x=\left(\frac{1}{2}\right)^7\div\left(\frac{1}{2}\right)^5\)
\(x=\left(\frac{1}{2}\right)^{7-5}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\) .
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{9}{21}\right)^2\)
\(\left(\frac{3}{7}\right)^2\times x=\left(\frac{3}{7}\right)^4\)
\(x=\left(\frac{3}{7}\right)^4\div\left(\frac{3}{7}\right)^2\)
\(x=\left(\frac{3}{7}\right)^{4-2}=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
\(2^x=2\Rightarrow x=1\)
\(3^x=3^4\Rightarrow x=4\)
\(7^x=7^7\Rightarrow x=7\)
\(\left(-3\right)^x=\left(-3\right)^5\Rightarrow x=5\)
\(\left(-5\right)^x=\left(-5\right)^4\Rightarrow x=4\)
\(2^x=4\Leftrightarrow2^x=2^2\Rightarrow x=2\)
\(2^x=8\Leftrightarrow2^x=2^3\Rightarrow x=3\)
\(2^x=16\Leftrightarrow2^x=2^4\Rightarrow x=4\)
\(3^{x+1}=3^2\Leftrightarrow x+1=2\Leftrightarrow x=2-1\Rightarrow x=1\)
\(5^{x-1}=5\Leftrightarrow x-1=1\Leftrightarrow x=1+1\Rightarrow x=2\)
\(6^{x+4}=6^{10}\Leftrightarrow x+4=10\Leftrightarrow x=10-4\Rightarrow x=6\)
\(5^{2x-7}=5^{11}\Leftrightarrow2x-7=11\Leftrightarrow2x=11+7\Leftrightarrow2x=18\Leftrightarrow x=18\div2\Rightarrow x=9\)
\(\left(-2\right)^{4x+2}=64\)
\(2^{-4x+2}=2^6\Leftrightarrow-4x+2=6\Leftrightarrow-4x=6-2\Leftrightarrow-4x=4\Leftrightarrow x=4\div\left(-4\right)\Rightarrow x=-1\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\Rightarrow x=5\)
\(\left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^5\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
\(\left(\frac{3}{4}\right)^{2x-1}=\left(\frac{3}{4}\right)^{5x-4}\Rightarrow2x-1=5x-4\)
\(2x-5x=-4+1\)
\(-3x=-3\Rightarrow x=1\)
\(\left(\frac{-1}{10}\right)^x=\frac{1}{100}\)
\(\left(\frac{1}{10}\right)^{-x}=\left(\frac{1}{10}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{2}\right)^x=\frac{9}{4}\)
\(\left(\frac{3}{2}\right)^{-x}=\left(\frac{3}{2}\right)^2\Rightarrow-x=2\Rightarrow x=-2\)
\(\left(\frac{-3}{5}\right)^{2x}=\frac{9}{25}\)
\(\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^2\Rightarrow-2x=2\Rightarrow x=-1\)
\(\left(\frac{-2}{3}\right)^x=\frac{-8}{27}\)
\(\left(\frac{-2}{3}\right)^x=\left(\frac{-2}{3}\right)^3\Rightarrow x=3\).
hehe. đánh tới què tay, hoa mắt lun r nekkk!!
a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)
=>16x-7=13x+2
=>3x=9
hay x=3
b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)
=>x+2017=0
hay x=-2017
e: \(\left(2x-3\right)^2=144\)
=>2x-3=12 hoặc 2x-3=-12
=>2x=15 hoặc 2x=-9
=>x=15/2 hoặc x=-9/2
a) Áp dụng t/c dãy tỉ số bằng nhau :
\(\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{16}=\dfrac{x^2-y^2}{25-16}=\dfrac{1}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=\dfrac{1}{9}\Rightarrow x^2=\dfrac{25}{9}\Rightarrow x=\pm\dfrac{5}{3}\\\dfrac{y^2}{16}=\dfrac{1}{9}\Rightarrow y^2=\dfrac{16}{9}\Rightarrow y=\pm\dfrac{4}{3}\end{matrix}\right.\)
Vậy............
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=t\Rightarrow x=5t;y=4t\)(*)
Thay (*) vào \(x^2-y^2=1\) ta được:
\(\left(5t\right)^2\cdot\left(4t\right)^2=1\)
\(\Rightarrow5^2\cdot t^2-4^2\cdot t^2=1\cdot4\)
\(\Rightarrow t^2\left(25-16\right)=1\)
\(\Rightarrow t^2\cdot9=1\)
\(\Rightarrow t^2=\dfrac{1}{9}\)
\(\Rightarrow t=\dfrac{1}{3}\) hoặc \(t=\dfrac{-1}{3}\)
\(\Rightarrow x=5t;y=4t\)(tự tính nhá )
b) \(\left|2x-y+\dfrac{1}{2}\right|+\left(x+y-\dfrac{3}{2}\right)^2=0\) khi \(\left|2x-y+\dfrac{1}{2}\right|=\left(x+y-\dfrac{3}{2}\right)=0\) hoặc \(\left|2x-y+\dfrac{1}{2}\right|\) và\(\left(x+y-\dfrac{3}{2}\right)^2\) là 2 số đối nhau
mà \(\left|2x-y+\dfrac{1}{2}\right|\) và \(\left(x+y-\dfrac{3}{2}\right)^2\) đều lớn hơn hoặc bằng 0 nên không thể là 2 số đối nhau
\(\Rightarrow\left|2x-y+\dfrac{1}{2}\right|=\left(x+y-\dfrac{3}{2}\right)^2=0\)
\(\left|2x-y+\dfrac{1}{2}\right|=0\Rightarrow2x-y+\dfrac{1}{2}=0\)
\(\Rightarrow2x-y=-\dfrac{1}{2}\)
\(\Rightarrow y=2x-\left(-\dfrac{1}{2}\right)=2x+\dfrac{1}{2}\) (1)
\(\left(x+y-\dfrac{3}{2}\right)^2=0\Rightarrow x+y-\dfrac{3}{2}=0\)
\(\Rightarrow x+y=\dfrac{3}{2}\) (2)
Thay (1) vào (2) ta được:
\(x+2x+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Rightarrow3x=\dfrac{3}{2}-\dfrac{1}{2}=\dfrac{2}{2}=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
\(\Rightarrow y=2x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
a) \(-x^2\le0\)
Vậy \(MAX_{-x^2}=0\) khi x = 0
b) Đặt \(A=-2x^2+5\)
\(-2x^2\le0\)
\(\Rightarrow-2x^2+5\le5\)
Vậy \(MAX_A=5\) khi x = 0
c) Đặt \(B=3-x^4\)
\(-x^4\le0\)
\(\Rightarrow3-x^4\le3\)
Vậy \(MAX_B=3\) khi x = 0
d) Đặt \(C=\frac{1}{x^2+2}\)
vì \(x^2+2\ge0\) nên để C lớn nhất thì \(x^2+2\) bé nhất
Ta có: \(x^2+2\ge2\)
\(\Rightarrow\frac{1}{x^2+2}\le\frac{1}{2}=0,5\)
Vậy \(MAX_C=0,5\) khi x = 0
e) tương tự d
a)Ta thấy: \(x^2\ge0\Rightarrow-x^2\le0\)
Dấu "=" xảy ra khi \(-x^2=0\Leftrightarrow x=0\)
b)Ta thấy: \(x^2\ge0\Rightarrow-2x^2\le0\Rightarrow-2x^2+5\le5\)
Dấu "=" xảy ra khi \(-2x^2=0\Leftrightarrow x=0\)
c)Ta thấy: \(x^4\ge0\Rightarrow-x^4\le0\Rightarrow3-x^4\le3\)
Dấu "=" xảy ra khi \(-x^4=0\Leftrightarrow x=0\)
d)Ta thấy: \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(x^2=0\Leftrightarrow x=0\)
e)Ta thấy: \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+5\ge5\Rightarrow\dfrac{1}{2x^2+5}\le\dfrac{1}{5}\)
Dấu "=" xảy ra khi \(2x^2=0\Leftrightarrow x=0\)
g)Ta thấy: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
\(\Rightarrow\dfrac{1}{\left(x-1\right)^2+4}\le\dfrac{1}{4}\Rightarrow\dfrac{8}{\left(x-1\right)^2+4}\le2\)
Dấu "=" xảy ra khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
P/s:mình nghĩ những bài tập này rất cơ bản, bạn nên tự làm không lên lớp sau mình thề bạn sẽ mất sạch điểm bài cực trị
\(7^{2x}+7^{2x+2}=2450\)
\(7^{2x}+7^{2x}.7^2=2450\)
\(7^{2x}+7^{2x}.49=2450\)
\(7^{2x}\left(1+49\right)=2450\)
\(7^{2x}.50=2450\)
\(7^{2x}=2450:50\)
\(7^{2x}=49\)
\(7^{2x}=7^2\)
\(2x=2\)
=> \(x=1\)
Vậy \(x=1\)