K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

xin lỗi nhưng mik mong bạn hiểu ạ :((((

nó bị lỗi gí á

 

28 tháng 10 2021

undefined

c: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

6 tháng 11 2021

Giúp e câu b với

 

13 tháng 10 2021

c: Xét ΔABM vuông tại A có AK là đường cao ứng với cạnh huyền BM

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

25 tháng 10 2023

a: BC=BH+CH

=4+6

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)

=>\(\widehat{AMB}\simeq39^0\)

c: ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

25 tháng 10 2023

loading...  Hình vẽ đây!

25 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot6=24\)

=>\(AH=2\sqrt{6}\left(cm\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC^2=24+36=60\)

=>\(AC=2\sqrt{15}\left(cm\right)\)

ΔAHB vuông tại H

=>\(AB^2=AH^2+HB^2=16+24=40\)

=>\(AB=2\sqrt{10}\left(cm\right)\)

b: BC=BH+CH=10cm

c: ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BM\)

22 tháng 10 2021

b: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

hay \(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

Xét ΔBKC và ΔBHM có

\(\dfrac{BK}{BH}=\dfrac{BC}{BM}\)

\(\widehat{MBH}\) chung

Do đó: ΔBKC\(\sim\)ΔBHM

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)