K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x^2-2x\)

\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)

18 tháng 9 2021

Cho mình sửa lại nhé:

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

\(\Leftrightarrow x^2+2x-2=x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

24 tháng 7 2020

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)

vậy x=2; x=-13

24 tháng 7 2020

Bài làm:

đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)

Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)

\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)

\(x+\frac{29}{5}-\frac{x}{3}=0\)

\(x-\frac{1}{3}x=-\frac{29}{5}\)

\(\frac{2}{3}x=-\frac{29}{5}\)

\(x=-\frac{87}{10}\)

12 tháng 1 2016

(x+2)^3-(x-2)^3=12x(x-1)-8

<=>x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8

<=>12x^2+16=12x^2-12x-8

<=>12x+24=0

<=>x=-24/12=-2

Vậy S={-2}

tick nha các bạn

12 tháng 1 2016

 

(x+2)^3-(x-2)^3=12x(x-1)-8

<=>x3+6x2+12x+8-x3+6x2-12x+8=12x2-12x-8

<=>12x2+16=12x2-12x-8

<=>12x+24=0

<=>x=-24/12=-2

Vậy S={-2}

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt 

\(\left|2x-x^2-1\right|=2x-x^2-1\)

\(2x-x^2-1=2x-x^2-1\)

\(2x-x^2-1-2x+x^2+1=0\)

\(x=0\)

hoặc 

\(-\left|2x-x^2-1\right|=2x-x^2-1\)

\(-2x-x^2-1=2x-x^2-1\)

\(-2x-x^2-1-2x+x^2+1=0\)

\(-4x=0\)

\(x=0\)

Trả lời:

| 2x -x^2 -1| = 2x -x^2 -1

<=> 2x - x^2 -1 =2x -x^2 -1

<=> 2x -x^2 -1 -2x +x^2 +1 =0

<=> 0 = 0

Vậy, phương trình đúng với mọi x

#Học tốt:))

28 tháng 8 2016

\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)

Vậy A > 0

28 tháng 8 2016

\(A=x^2+x+1\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow x^2+1+1\ge1\)

Vậy: \(A>0\)