Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
Bài 2 ;
Ta có : x2 + 3x
= x2 + 3x + \(\frac{9}{4}-\frac{9}{4}\)
= \(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà ; \(\left(x+\frac{3}{2}\right)^2\ge\forall x\)
Nên : \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi x = \(-\frac{3}{2}\)
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)
\(x+\frac{29}{5}-\frac{x}{3}=0\)
\(x-\frac{1}{3}x=-\frac{29}{5}\)
\(\frac{2}{3}x=-\frac{29}{5}\)
\(x=-\frac{87}{10}\)