K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAK và ΔBDK có

BA=BD

\(\widehat{ABK}=\widehat{DBK}\)

BK chung

Do đó: ΔBAK=ΔBDK

b: Ta có: ΔBAK=ΔBDK

nên KA=KD

mà BA=BD

nên BK là đường trung trực của AD

29 tháng 5 2022

A B C D O K

a)Xét \(\Delta BAK\) và \(\Delta BDK\) có:

    AB=BD

    \(\widehat{ABK}=\widehat{DBK}\)

   BK chung 

=>  \(\Delta BAK\) = \(\Delta BDK\) (c-g-c)

b)Gọi O là giao điểm của AD và BK

Xét \(\Delta ABO\) và \(\Delta DBO\) có :

    BO chung 

   \(\widehat{ABO}=\widehat{DBO}\)

   AB=DB

=>  \(\Delta ABO\) và \(\Delta DBO\)  (c-g-c)

=> AO=BO (1) ; \(\widehat{AOB}=\widehat{DOB}\)

Có : \(\widehat{AOB}+\widehat{DOB}=180^o\) mà \(\widehat{AOB}=\widehat{DOB}\)

=> ​​\(\widehat{AOB}=\widehat{DOB}=\dfrac{180^o}{2}=90^o\) (2)

Từ (1)(2) => BK là đường trung trực cùa AD

 

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650

17 tháng 7 2021

\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right).\)

\(B=\frac{-3}{2^2}\times\frac{-8}{3^2}\times\frac{-15}{4^2}\times.....\times\frac{-9999}{100^2}\)

\(B=-\left(\frac{3}{2^2}\times\frac{8}{3^2}\times.....\times\frac{9999}{100^2}\right)\)(vì A là tích của 99 thừa số âm nên kết quả là âm )

\(B=-\left(\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times.....\times\frac{99.101}{100.100}\right)\)

\(B=-\left(\frac{1.2.3...99}{2.3.4.....100}\times\frac{3.4.5....101}{2.3.4....100}\right)\)

\(B=-\left(\frac{1}{100}\times\frac{101}{2}\right)\)

\(B=-\frac{101}{200}\)

17 tháng 7 2021

Phần c

Bạn tham khảo link này nhé !

https://olm.vn/hoi-dap/detail/240304549977.html

Hoặc :

Câu hỏi của Nguyễn Minh Châu - Toán lớp 7 - Học trực tuyến OLM

Hok tốt

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

8 tháng 10 2017

mình thi rồi nhưng ko nói đề được , cô ko cho chép đè nhưng đề hơi khó gianroinhưng mình làm được haha

24 tháng 10 2017

Mk cho bn biết đề rồi ? Bn làm bài được ko ?

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.

17 tháng 2 2017

Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)

\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)

Vậy GTLN của \(Q=-\left(x-7\right)^2-6\)\(-6\)