K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

áp dụng các hệ thức trong tam giác vuông ta có

\(AH^2=HB.HC\)

theo bài ra ta có

\(\frac{HB}{HC}=\frac{1}{4}\)=> \(\frac{HB}{1}=\frac{HC}{4}\) => \(\left(\frac{HB}{1}\right)^2=\left(\frac{HC}{4}\right)^2\) => \(\frac{HB^2}{1}=\frac{HC^2}{16}\)

áp dụng các tính chất của tỉ lệ thức ta có

\(\frac{HB^2}{1}=\frac{HC^2}{16}=\frac{HB.HC}{16}=\frac{AH^2}{16}=\frac{12^2}{16}=9\)

=> \(\frac{HB^2}{1}=9=>HB=3\)

=> \(\frac{HC^2}{16}=9=>HC=12\)

27 tháng 6 2016

Áp dung hệ thức lượng trong tam giác vuông, ta có: \(AH^2=BH.CH\Rightarrow AH^2=4BH^2\)

\(\Rightarrow BH=6\left(cm\right),CH=24\left(cm\right)\)

Chúc em học tốt :)

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

12 tháng 7 2023

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{\dfrac{3}{4}AB^2}\\ \to\dfrac{1}{AB^2}+\dfrac{4}{3AB^2}=\dfrac{1}{23,04}\\ \to\dfrac{7}{3AB^2}=\dfrac{1}{23,04}\\ \to AB^2=53,76\\ \to AB=\dfrac{8\sqrt{21}}{5}\left(cm\right)\\ \to AC=\dfrac{32\sqrt{21}}{15}\left(cm\right)\\ \to BC=\sqrt{AB^2+AC^2}=\dfrac{8\sqrt{21}}{3}\left(cm\right)\)

Hệ thức lượng:

\(HB=\dfrac{AB^2}{BC}=\dfrac{24\sqrt{21}}{25}\left(cm\right)\\ HC=\dfrac{AC^2}{BC}=\dfrac{7168-200\sqrt{21}}{75}\left(cm\right)\)

27 tháng 7 2017

B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC

AH2​=HB x HC =3x4=12

AH=căn 12 r tính mấy cạnh kia đi

B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4

Thế vào cong thức Pytago Tam giác ABC tính máy cái kia

27 tháng 7 2017

Oh 2015 tuong ms dang chu :v

14 tháng 6 2017

Theo gt: \(\dfrac{HB}{HC}=\dfrac{1}{3}\Leftrightarrow HB=\dfrac{HC}{3}\left(1\right)\)

Ta có: \(AH^2=BH.CH\left(2\right)\) (định lí 2)

Thay (1) vào (2) ta được:

\(AH^2=\dfrac{HC}{3}.HC=\dfrac{HC^2}{3}\)

mà AH = 12cm

\(\Rightarrow12^2=\dfrac{HC^2}{3}\Leftrightarrow HC^2=12^2.3=432\Leftrightarrow HC=12\sqrt{3}\left(cm\right)\)

Thay HC = \(12\sqrt{3}\) vào (1) ta được:

\(HB=\dfrac{HC}{3}=\dfrac{12\sqrt{3}}{3}=4\sqrt{3}\left(cm\right)\)

Mặt khác BC = HB + HC = \(4\sqrt{3}+12\sqrt{3}=16\sqrt{3}\left(cm\right)\)

10 tháng 8 2015

Gọi HB,HC lần lượt là a và b(a,b >0)

Có a -b =9 (cm) => b=a+9

Ta lại có : AH2 = a(a+9)

62 = a2 +9a

a2 +9a - 36 = 0

a2 +12a - 3a - 36 = 0

a(a+12) - 3(a+3) = 0

(a + 12)(a - 3) = 0    

Mà a > 0  => a=3

=> b = 9 +3 =12

Vậy : HB = 3cm

        HC = 12 cm