Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một mảnh đất hình tam giác vuôngABCvuông ở A.cạnh AB=30cm,cạnh ac= 40cm,cạnh BC=50cm,người ta dành phần đất hình thang đáy lớn BC và chiều cao 12m để trồng cây.phần đất còn lại để đào giếng.Tính diện tích phần đất để làm giếng
\(a,\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\) ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2-5x}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2-2x-x+2-x^2-2x=2-5x\)
\(\Leftrightarrow x^2-2x-x+2-x^2-2x-2+5x=0\)
\(\Leftrightarrow0x=0\)
KL : PT vô số Nghiệm
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)
\(-16-8x=18-6x\)
\(-16-8x-18+6x=0\)
\(-34-2x=0\)
\(2x=-34\Leftrightarrow x=-17\)
b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0
\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)
\(x^2+3x+x^2-x-2=2x^2+2x\)
\(2x^2+2x-2=2x^2+2x\)
\(2x^2+2x-2x^2-2x-2=0\)
\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)
a) Đặt \(x^2-y=a\) , ta có đa thức : \(3a^2+4a-15=\left(3a^2-5a\right)+\left(9a-15\right)=a\left(3a-5\right)+3\left(3a-5\right)=\left(a+3\right)\left(3a-5\right)\)
Thay \(x^2-y=a\)vào đa thức trên được : \(\left(x^2-y+3\right)\left(3x^2-3y-5\right)\)
b) \(12x^2-12xy+3y^2-20x+10y+8=\left(12x^2-6xy-12x\right)-\left(6xy-3y^2-6y\right)-\left(8x-4y-8\right)\)\(=6x\left(2x-y-2\right)-3y\left(2x-y-2\right)-4\left(2x-y-2\right)=\left(2x-y-2\right)\left(6x-3y-4\right)\)
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)
\(\Leftrightarrow-x+21=0\)
\(\Leftrightarrow x=21\)( thỏa )
Vậy....