Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có: (α) // AB
⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.
Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)
⇒ (α) ∩ (ABCD) = MN.
+ (α) // SC
⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.
Kẻ MQ // SC (Q ∈ SB).
+ (α) // AB
⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.
Từ Q kẻ QP // AB (P ∈ SA).
⇒ (α) ∩ (SAD) = PN.
Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.
Ta có: PQ// AB và NM // AB
=> PQ // NM
Do đó, tứ giác MNPQ là hình thang.
Đáp án D
Trong mặt phẳng (ABCD), kẻ đường thẳng d đi qua O và song song với AB
d cắt AD tại J
d cắt BC tại G
Trong mặt phẳng (SBC), kẻ đường thẳng Gx đi qua G và song song với SC; đường thẳng này cắt SB tại H
Trong mặt phẳng (SAB), kẻ đường thẳng y đi qua H và song song với AB
y cắt SA tại I
⇒ IHGJ là thiết diện cần tìm
Xét tứ giác IHGJ có: IH // JG ( // AB )
⇒ IHGJ là hình thang
(α) và (SAD) cùng chứa điểm M. Mà (α) // AD nên (α) \(\cap\) (SAD) = d1 với d1 là đường thẳng đi qua M và song song với AD.
Trong (SAD) gọi H = d1 \(\cap\) SA ⇒ (SAD) \(\cap\) (α) = MH
(α) và (SBD) cùng chứa điểm M. Mà (α) // SB nên (α) \(\cap\) (SBD) = d2 với d2 là đường thẳng đi qua M và song song với SB.
Trong (SBD) gọi G = d2 \(\cap\) BD ⇒ (SAD) \(\cap\) (α) = MG
(SAB) và (α) cùng chứa điểm H. Mà (SAB) chứa SB, (α) chứa MG và ta lại có MG // SB
⇒ (SAB) \(\cap\) (α) = d3 với d3 là đường thẳng đi qua H và song song với SB và MG
Trong (SAB) gọi J = \(d_3\cap AB\) ⇒ (SAB) \(\cap\) (α) = HJ
Trong (ABCD) gọi K = JG \(\cap\) CD
Thiết diện cần tìm là tứ giác HMKJ (hình thang hai đáy HM, JK)
*Lưu ý : (α) không cắt (SBC) vì (α) // (SBC).
\(\cap\)
a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).
b) Ta có
⇒ BD ⊥ SC
Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).
Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)
Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).
Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).
Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.
a) Trường hợp 1 .
I thuộc đoạn AO (0 < x < a/2)
Khi đó I ở vị trí I1
Ta có: (α) // (SBD)
Vì (α) // BD nên (α) cắt (ABD) theo giao tuyến M1N1 ( qua I1) song song với BD
Tương tự (α) // SO nên (α) cắt (SOA) theo giao tuyến
S1T1 song song với SO.
Ta có thiết diện trong trường hợp này là tam giác S1M1N1.
Nhận xét. Dễ thấy rằng S 1 M 1 / / S B v à S 1 N 1 / / S D . Lúc đó tam giác S1M1N1 đều.
Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)
Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều
S 2 M 2 N 2 c ó M 2 N 2 / / B D , S 2 M 2 / / S B , S 2 N 2 / / S D .
Trường hợp 3. I ≡ O. Thiết diện chính là tam giác đều SBD.
b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.
Trường hợp 1. I thuộc đoạn AO (0 < x < a/2)
Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)
Trường hợp 3. I ≡ O.
Tóm lại
∗ Đồ thị của hàm số S theo biến x như sau:
Vậy Sthiết diện lớn nhất khi và chỉ khi x = a/2.
a, Giả thiết cho biết (α) và(ABCD) cùng chứa điểm O
Mà (α) // AB ⇒ (α) chứa đường thẳng song song với AB
⇒ (α) \(\cap\) (ABCD) = d1 . Với d1 là đường thẳng đi qua O và song song với AB. Trong (ABCD) gọi \(\left\{{}\begin{matrix}G=d_1\cap AD\\H=d_1\cap BC\end{matrix}\right.\)
⇒ (α) \(\cap\) (ABCD) = GH (hình vẽ)
Giả thiết cho biết :
Giả thiết cho biết (α) và (SAC) cùng chứa điểm O
Mà (α) // SC ⇒ (α) chứa đường thẳng song song với SC
⇒ (α) \(\cap\) (SAC) = d2 . Với d2 là đường thẳng đi qua O và song song với SC. Trong (SAC) gọi I = d2 \(\cap\) SA
⇒ (α) \(\cap\) (SAC) = O\(I\) (hình vẽ)
(P) và (SAB) cùng chứa điểm I. Mà (P) chứa GH, (SAB) chứa AB. Mà ta lại có AB // GH
⇒ (P) \(\cap\) (SAB) = d3. Với d3 là đường thẳng đi qua I và song song với AB và GH
Trong (SAB), gọi J = \(d_3\cap SB\)
⇒ Thiết diện cần tìm là tứ giác IJHG
Tứ giác này có IJ // HG nên nó là hình thang