K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

undefined

(α) và (SAD) cùng chứa điểm M. Mà (α) // AD nên (α) \(\cap\) (SAD) = d1 với d1 là đường thẳng đi qua M và song song với AD. 

Trong (SAD) gọi H = d1 \(\cap\) SA ⇒ (SAD) \(\cap\) (α) = MH

(α) và (SBD) cùng chứa điểm M. Mà (α) // SB nên (α) \(\cap\) (SBD) = d2 với d2 là đường thẳng đi qua M và song song với SB. 

Trong (SBD) gọi G = d2 \(\cap\) BD ⇒ (SAD) \(\cap\) (α) = MG

(SAB) và (α) cùng chứa điểm H. Mà (SAB) chứa SB, (α) chứa MG và ta lại có MG // SB

⇒ (SAB) \(\cap\) (α) = d3 với d3 là đường thẳng đi qua H và song song với SB và MG

Trong (SAB) gọi J = \(d_3\cap AB\) ⇒ (SAB) \(\cap\) (α) = HJ

Trong (ABCD) gọi K = JG \(\cap\) CD

Thiết diện cần tìm là tứ giác HMKJ (hình thang hai đáy HM, JK)

*Lưu ý : (α) không cắt (SBC) vì (α) // (SBC). 

\(\cap\)

3 tháng 9 2021

undefined

a, Giả thiết cho biết (α) và(ABCD) cùng chứa điểm O

Mà (α) // AB ⇒ (α) chứa đường thẳng song song với AB

⇒ (α) \(\cap\) (ABCD) = d1 . Với d1 là đường thẳng đi qua O và song song với AB. Trong (ABCD) gọi \(\left\{{}\begin{matrix}G=d_1\cap AD\\H=d_1\cap BC\end{matrix}\right.\)

⇒ (α) \(\cap\) (ABCD) = GH (hình vẽ)

Giả thiết cho biết : 

Giả thiết cho biết (α) và (SAC) cùng chứa điểm O

Mà (α) // SC ⇒ (α) chứa đường thẳng song song với SC

⇒ (α) \(\cap\) (SAC) = d2 . Với d2 là đường thẳng đi qua O và song song với SC. Trong (SAC) gọi I = d2 \(\cap\) SA

⇒ (α) \(\cap\) (SAC) = O\(I\) (hình vẽ)

(P) và (SAB) cùng chứa điểm I. Mà (P) chứa GH, (SAB) chứa AB. Mà ta lại có AB // GH

⇒ (P) \(\cap\) (SAB) = d3. Với d3 là đường thẳng đi qua I và song song với AB và GH

Trong (SAB), gọi J = \(d_3\cap SB\)

⇒ Thiết diện cần tìm là tứ giác IJHG

Tứ giác này có IJ // HG nên nó là hình thang 

20 tháng 12 2021

Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E

⇒E∈(SBC)⇒E∈(SBC)

Do AD song song BE, áp dụng Talet:

ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE

⇒MN⇒MN là đường trung bình tam giác SAE

⇒MN//SE⇒MN//(SBC)