K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

c)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)

\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có  7 số 1)

\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(7+1-\frac{1}{8}=\frac{63}{8}\)

Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé

Chúc bạn học tốt !!!

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

15 tháng 4 2017

Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(\frac{1}{7^2}< \frac{1}{6.7}\)

................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)

=> \(C< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(C< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)                                                             (1)

Lại có: \(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(\frac{1}{7^2}>\frac{1}{7.8}\)

..................

\(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{100.101}\)

=> \(C>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

=> \(C>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)                                                                (2)

Từ (1) và (2) suy ra \(\frac{1}{6}< C< \frac{1}{4}\)(đpcm)

1 tháng 5 2016

Ta thấy 1/2< 1/1.2 ; 1/3< 1/2.3 ; 1/42 <1/3.4 ; 1/52 < 1/4.5 ; 1/62 < 1/5.6 ; 1/7<1/6.7 ; 1/82 < 1/7.8

                       suy ra B < 1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6 + 1/6.7 + 1/7.8

                       Đặt A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8

                              A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 -1/8 = 1-1/8 

                         suy ra A <1 mà B<A nên B<1