Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
...
\(\frac{1}{8^2}<\frac{1}{8\times9}=\frac{1}{8}-\frac{1}{9}\)
Tổng các vé, ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<\frac{1}{2}-\frac{1}{9}=\frac{7}{18}<1\)
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.....................
\(\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Tham khảo
chứng tỏ rằng : B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 + 1/82
Học tốt
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7.8}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
B < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
B < \(1-\dfrac{1}{8}\)\(=\)\(\dfrac{7}{8}\)< 1
Vậy B < 1 (đpcm)
P/S: đpcm là điều phải chứng minh.:)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.7}\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A<\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A<\(\left[\left(\dfrac{1}{1}-\dfrac{1}{8}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)\right]\)A<\(\left[\left(\dfrac{8}{8}-\dfrac{1}{8}\right)+0+0+0+0+0+0+0\right]\)
A<\(\dfrac{7}{8}< 1\)
Vậy ta có đpcm.
Sorry nha, chỗ phân tích ra thành tống đại số phải như này :
A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
Rồi làm tương tự.
Mình cho bạn công thức nè :\(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
Ta thấy 1/22 < 1/1.2 ; 1/32 < 1/2.3 ; 1/42 <1/3.4 ; 1/52 < 1/4.5 ; 1/62 < 1/5.6 ; 1/72 <1/6.7 ; 1/82 < 1/7.8
suy ra B < 1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6 + 1/6.7 + 1/7.8
Đặt A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 -1/8 = 1-1/8
suy ra A <1 mà B<A nên B<1