Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
Câu 1
x-(-25-17-x)=6+x
<=>x+25+17+x=6+x
<=>2x-x=6-25-17
<=>x=-36
Tick rùi mình làm 2 câu còn lại cho
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
a, Số lớn nhất trong dãy chia hết cho 2 là : 100
Số nhỏ nhất trong dãy chia hết cho 2 là : 10
Vì số chia hết cho 2 và 5 có tận cùng là 0 nên khoảng cách là 10 (Vì 10; 20;...;100)
Từ 1 đến 100 có số số chia hết cho 2 và 5 là :
( 100 - 10 ) : 10 +1 = 10 (số)
b,Số lớn nhất chia hết cho 2 và 5 bé hơn 182 là : 180
Số nhỏ nhất chia hết cho 2 và 5 lớn hơn 136 là : 140
Vì số chia hết cho 2 và 5 có tận cùng là 0 nên khoảng cách là 10
Gọi A là tập hợp các số tự nhiên chia hết cho 2 và 5 lớn hơn 136 và bé hơn 182
Các số đó là :
( 180 -140 ) :10 +1 = 5 (số)
c, Ta thấy ( n+ 3) . (n +6) chia hết cho 2
Mà 3+6 = 9 chia 2 dư 1 nên n + n chia 2 cũng dư 1( vì 1+1=2 chia hết cho 2)
Các số n thỏa mãn đề bài là :
1;3;5;7;9
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1, Thấy : \(\frac{1}{5}< \frac{2}{2.4}\)
\(\frac{1}{13}< \frac{2}{4.6}\)
.....
\(\frac{1}{n^2+\left(n+1\right)^2}< \frac{2}{2n\left(2n+1\right)}\)
Cộng từng vế có :
\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\)
\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}-\frac{1}{4}+....+\frac{1}{2n}-\frac{1}{2n+2}\)
\(\frac{1}{5}+\frac{1}{13}+..+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}-\frac{1}{2n+2}\)
Mà \(\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)=> Tổng trên < 1/2
2,M = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
=> M \(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{\left(n-1\right)^2}-\frac{1}{n^2}+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(M=1-\frac{1}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2-1}{\left(n+1\right)^2}=\frac{n^2+2n+1-1}{\left(n+1\right)^2}=\frac{n^2+2n}{\left(n+1\right)^2}\)
Đến đây tắc r tự nghĩ tiếp >: