K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

13 tháng 4 2018

bài 2

a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54

<=> 

\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1

13 tháng 4 2018

Bài 1 : 

\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow\)\(2n+2-2n-3⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)

Do đó : 

\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~