Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có P đồng thời là trung điểm của AB và NM nên ANBM là hình bình hành
b)dễ cm CBNM là hình bình hành
nên MN=BC
c)để ANBM vuông thì ANBM có 1 góc vuông
ta chọn góc đó là góc <AMB
khi đó BM đồng thời là đường thời là đường cao và trung tuyến nên ABC cân tại B
vậy ABC là tam giác vuông cân tại B
c) giống câu a ta dễ cm BMCK là hình bình hành
suy ra BK // BC
mà BN // BC
nên B,K,N thẳng hàng
có BN=AM (ANBM là hình bình hành)
BK=CM (BMCK là hình bình hành)
AM=CM ( M là trung điểm AC)
suy ra BN=BK và B,K,N thẳng hàng
nên N và K đối xứng qua B
a, Ta có : \(3x^2+3y^2+4xy+2x-2y+2=\) 0
\(\Rightarrow2\left(x^2+2xy+y^2\right)+x^2+2x+1+y^2-2y+1=0\)
\(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\forall x,y}\) \(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Vậy x = -1 và y = 1
a, <=> (2x^2+4xy+2y^2)+(x^2+2x+1)+(y^2-2y+1) = 0
<=>2.(x+y)^2+(x+1)^2+(y-1)^2 = 0
Vì 2.(x+y)^2 ; (x+1)^2 ; (y-1)^2 đều >= 0 nên VT >=0
Dấu "=" xảy ra <=> x+y=0 ; x+1=0 ; y-1=0 <=> x=-1 và y=1
Vậy (x,y) thuộc {(-1;1)}
k mk nha
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
=x^4+1+2x^2+3x^3+3x+2x^2
=x^4+3x^3+4x^2+3x+2x^2
=x^3+x^3+2x^3+2x^2+2x^2+2x+x+1
=x^4+3x^3+4x^2+3x+1
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
Lên muộn còn con f làm nốt cho nè
f) \(x^2+1-\dfrac{x^4+1}{x^2+1}=\dfrac{\left(x^2+1\right)^2-\left(x^4+1\right)}{x^2+1}\)
\(=\dfrac{x^4+2x^2+1-x^4-1}{x^2+1}=\dfrac{2x^2}{x^2+1}\)