Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+3y+5z=\frac{x^2+y^2+z^2}{2}+19\)
\(x^2+y^2+z^2+38=4x+6y+10z\)
\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(x-2=y-3=z-5=0\)
\(x=2,y=3,z=5\)
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
A. Trắc nghiệm: 1.A; 2.B; 3.D; 4.D; 5.B; 6.C; 7.B; 8.C
B. Tự luận
Bài 4:
a/ Ta có AB//CD; \(AM\in AB;CN\in CD\) => AM//CN
AN//CM (gt)
=> AMCN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi 1 là hbh)
b/ Ta có
AD//CD; \(CI\in BC\) => AD//CI
AD=BC mà BC=CI => AD=CI
=> ACID là hbh (Tứ giác có cặp cạnh đối // và bằng nhau là hbh) => AC=DI (trong hbh các cặp cạnh đối = nhau từng đôi 1)
c/
Ta có
AM=BM (gt) \(\Rightarrow AM=\frac{AB}{2}\) mà AB=CD \(\Rightarrow AM=\frac{CD}{2}\)
Mà AMCN là hbh => AM=CN => \(CN=\frac{CD}{2}\) => N là trung điểm của CD (1)
AMCN là hbh => OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O là trung điểm của AC (2)
Từ (1) và (2) => NO là đường trung binhd của tg ACD (đường thẳng đi qua trung điểm của 2 cạnh một tam giác là đường trung bình)
d/ Trong hbh ACID nối AI cắt CD tại N' => N' là trung điểm của CD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Mà N là trung điểm của CD (cmt)
=> N trùng N'
Ta có
AMCN là hbh => MC//AN (Trong hbh các cặp cạnh đối // với nhau từng đôi 1)
Mà \(NI\in AN\)
=> MC//NI
Bài 5
\(A=-\left(y^4-8y^2+16\right)+20=-\left(y^2-4\right)^2+20\)
Ta có \(\left(y^2-4\right)\ge0\Rightarrow-\left(y^2-4\right)^2\le0\)
\(\Rightarrow A=-\left(y^2-4\right)+20\le20\)
Vậy giá trị lớn nhất của A là 20
Bài 5 (tiếp)
\(-\left(y^2-4\right)+20=20\Rightarrow y^2-4=0\Rightarrow y^2=4\Rightarrow y=\pm2\)
\(1.\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\Leftrightarrow x=-\frac{1}{8}\)
\(2.\left(x-1\right)^2+\left(x+3\right)^2+2\left(x-1\right)\left(x+3\right)=4\Leftrightarrow\left(x-1+x+3\right)^2=4\)
\(\Leftrightarrow\left(2x+2\right)^2=4\Leftrightarrow\orbr{\begin{cases}2x+2=2\\2x+2=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
3.\(\left(x-1\right)^2-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)-x\right]=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(4.\left(3x-1\right)^2+\left(5x-2\right)^2-2\left(3x-1\right)\left(5x-2\right)=9\Leftrightarrow\left(3x-1-5x+2\right)^2=9\)
\(\Leftrightarrow\left(2x-1\right)^2=9\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
5.\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-2\right)\left(x+2\right)=5\Leftrightarrow x^3-1-\left(x^3-4x\right)=5\)
\(\Leftrightarrow4x=6\Leftrightarrow x=\frac{3}{2}\)
6.\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(x-2\right)\left(x+2\right)=2\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+27\right)+x^2-4=2\)
\(\Leftrightarrow-2x^2+3x-34=0\text{ vô nghiệm}\)
x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )
Bài 1: Thực hiện phép tính
\(-2x.\left(3x^2-2x+5\right)\)
\(=\left(-2x.3x^2\right)-\left(-2x.2x\right)+\left(-2x.5\right)\)
\(=-6x^3+4x^2-10x\)
\(\left(9x^5y^3-15x^4y^3+6x^3y^2\right).3xy\)
\(=\left(2x^5y^3.3xy\right)-\left(15x^4y^3.3xy\right)+\left(6x^3y^2.3xy\right)\)
\(=6x^6y^4-45x^5y^4+18x^4y^3\)
Bài 2: Tính giá trị biểu thức
\(A=\left(x^2+2xy+y^2\right).\left(x+y\right)\)
\(=\left(x+y\right)^2.\left(x+y\right)\)
\(=\left(x+y\right)^3\)
Thay vào ta được:
\(\left(99+1\right)^3=1000000\)
\(B=x^2+10x+25\)
\(=\left(x+5\right)^2\)
Thay vào ta được:
\(\left(15+5\right)^2=400\)
\(C=x^2+6x+9-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right).\left(x+3+y\right)\)
Thay vào ta được:
\(\left(7+3-2\right).\left(7+3+2\right)=96\)
Bài 3: Tính
\(\left(2x^2+3y\right)^3\)
\(=\left(2x^2\right)^3+3.\left(2x^2\right)^2.3y+3.2x^2.\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^3\)
\(\left(\frac{1}{2}x-3\right)^3\)
\(=\left(\frac{1}{2}x\right)^3-3.\left(\frac{1}{2}x\right)^2.3+3.\frac{1}{2}x.3^2-3^3\)
\(=\frac{1}{2}x^3-\frac{9}{4}x^2+\frac{27}{2}x-27\)
\(\left(2x-5y\right)^3\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.5y+3.2x.\left(5y\right)^2-\left(5y\right)^3\)
\(=8x^3-60x^2y+150xy^2-125y^3\)
Bài 4: Viết các biểu thức sau dưới dạng lập phương của 1 tổng hoặc 1 hiệu
\(-x^3+3x^2-3x+1\)
\(=-\left(x^3-3x^2+3x-1\right)\)
\(=-\left(x-1\right)^3\)
\(8-12x+6x^2-x\)
\(=2^3-3.2^2x+3.2x^2-x\)
\(=\left(2-x\right)^3\)
\(y^3+12y^2+48y+64\)
\(=y^3+3.4y^2+3.4^2y+4^3\)
\(=\left(y+4\right)^3\)
\(x^3-9x^2+27x-27\)
\(=x^3-3.3x^2+3.3^2x-3^3\)
\(=\left(x-3\right)^3\)