K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

a ) x y 2 y z = x y 2 : y y z : y = x y z b ) a 00 a ¯ b 00 b ¯ = a 00 a ¯ : 1001 b 00 b ¯ : 1001 = a b

c ) a b 00 ab ¯ c d 00 c d ¯ = a b 00 ab ¯ : 10001 c d 00 c d ¯ : 10001 = a b ¯ c d ¯

d ) x y z − y z t y 2 z 2 − y z = y z ( x − 1 ) : ( − y z ) y z ( y z − 1 ) : ( − y z ) = t − x 1 − y z

22 tháng 5 2017

A = a. (b - c - d) - a . (b + c - d)

= ab - ac - ad - ab - ac + ad

= 0

B = x . (z -y) -z . (x+ y) + y . (x - y)

= xz -xy -zx -zy - yx -yy

= -xy -xy - zy - yy

= -y (x - x - z - y)

= -y (-z - y )

20 tháng 1 2019

1. 

\(A=\left(x+y\right)-\left(z+t\right)\)

\(A=x+y-z-t\)

\(A=\left(x-z\right)+\left(y-t\right)\)

\(\Rightarrow A=B\)

20 tháng 1 2019

\(3+\left(-2\right)+x=5\)

\(1+x=5\)

\(x=4\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

a. Biểu thức không viết được thành tích. Bạn xem lại.

b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$

$=a(x-y+y+z)+b(x+y+z-y)$

$=a(x+z)+b(x+z)=(x+z)(a+b)$

c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$

$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$

d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$

$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$

7 tháng 12 2021

c,f  fk,l,xskooe

22 tháng 11 2015

A=2

B=3

C=5

D=7

E=17

22 tháng 11 2015

B=3

C=5

D=7

E=17

15 tháng 1 2016

a)tìm x,y thuộc N biết : 23-y^2=7(x-2016)^2b)tìm 2 số nguyên tố a,b biết : 3a-13=b(a-3)cần gấp trước 8:00giải nhanh mình link cho

\(a.\left(-x+y\right)-\left(z+y-x\right)=-x+y-z-y+x=-z\)

\(b.\left(a-b\right)-\left(x-b+a\right)=a-b-x+b-a=-x\)

Các câu còn lại tương tự

16 tháng 11 2018

a) (-x+y)-(z+y-x)=-x+y-z-y+x=(-x+x)+(y+-y)-z=-z

b) (a-b)-(x-b+a)=a-b-x+b-a=(a+-a)+(-b+b)-x=-x

c) -(x+y)+(x-y+m)-(m-y)=-x-y+x-y+m-m+y=(-x+x)+(-y+-y+y)+(m-m)=y

d) -(a+b-c)+(a+b-m)-(c-m)=-a-b+c+a+b-m-c+m=(-a+a)+(-b+b)+(-m+m)-c=-c

1 tháng 3 2020

Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

Tương tự

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)

\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)

Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)

Tương tự

\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)

\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)

Vậy \(1< M< 2\)nên M không là số tự nhiên

5 tháng 7 2017

Ta có: \(\frac{a}{b}< \frac{c}{d}\)(vì x<y)

\(\Rightarrow\)ad < bc (nhân chéo) (1)

Xét tích: a(b+d) = ab. ad     (2)

              b(a+c) = ab . bc     (3)

Từ (1),(2),(3) \(\Rightarrow\)a(b+d) < b(a+c)

\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}\)(*)

Xét tích: c(b+d) = bc .cd    (4)

              d(a+c) = ad .cd     (5)

Từ (1), (4), (5) \(\Rightarrow\)d(a+c) <c(b+d)

\(\Rightarrow\)\(\frac{a+c}{b+d}< \frac{c}{d}\)(**)

Từ (*) và (**) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Hay : \(x< z< y\)(đpcm)