Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Biểu thức không viết được thành tích. Bạn xem lại.
b. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)$
$=a(x+z)+b(x+z)=(x+z)(a+b)$
c. $(x-y)a+(x+y)b+(y+z)a+(z-y)b$
$=a(x-y+y+z)+b(x+y+z-y)=a(x+z)+b(x+z)=(x+z)(a+b)$
d. $(x+y+z)a+(-x-y-z)a+a(x+y)+az$
$=(x+y+z)a-(x+y+z)a+a(x+y+z)=a(x+y+z)$
a)tìm x,y thuộc N biết : 23-y^2=7(x-2016)^2b)tìm 2 số nguyên tố a,b biết : 3a-13=b(a-3)cần gấp trước 8:00giải nhanh mình link cho
\(a.\left(-x+y\right)-\left(z+y-x\right)=-x+y-z-y+x=-z\)
\(b.\left(a-b\right)-\left(x-b+a\right)=a-b-x+b-a=-x\)
Các câu còn lại tương tự
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Ta có: \(\frac{a}{b}< \frac{c}{d}\)(vì x<y)
\(\Rightarrow\)ad < bc (nhân chéo) (1)
Xét tích: a(b+d) = ab. ad (2)
b(a+c) = ab . bc (3)
Từ (1),(2),(3) \(\Rightarrow\)a(b+d) < b(a+c)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}\)(*)
Xét tích: c(b+d) = bc .cd (4)
d(a+c) = ad .cd (5)
Từ (1), (4), (5) \(\Rightarrow\)d(a+c) <c(b+d)
\(\Rightarrow\)\(\frac{a+c}{b+d}< \frac{c}{d}\)(**)
Từ (*) và (**) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Hay : \(x< z< y\)(đpcm)
a ) x y 2 y z = x y 2 : y y z : y = x y z b ) a 00 a ¯ b 00 b ¯ = a 00 a ¯ : 1001 b 00 b ¯ : 1001 = a b
c ) a b 00 ab ¯ c d 00 c d ¯ = a b 00 ab ¯ : 10001 c d 00 c d ¯ : 10001 = a b ¯ c d ¯
d ) x y z − y z t y 2 z 2 − y z = y z ( x − 1 ) : ( − y z ) y z ( y z − 1 ) : ( − y z ) = t − x 1 − y z