Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ x = -4 ; y = 5 ; z = 15
2/ vì ab = 1 = -1 . ( -1 ) = 1 . 1 và bằng nhau nên a = b
3/
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
Hai số đói nhau có tổng bằng 0
x+y=-a+b-c-d+c-b+d+a=0
Vậy x và y là 2 số đối nhau
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)
1.
\(A=\left(x+y\right)-\left(z+t\right)\)
\(A=x+y-z-t\)
\(A=\left(x-z\right)+\left(y-t\right)\)
\(\Rightarrow A=B\)
\(3+\left(-2\right)+x=5\)
\(1+x=5\)
\(x=4\)