Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://diendantoanhoc.net/topic/163051-x-fracxsqrtx2-1-frac3512/
b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)
Bình phương 2 vế rút gọn
\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)
Đặt \(\sqrt{x^4-x^2}=a\)
\(\Rightarrow a^2-4\sqrt{3}a+12=0\)
\(\Leftrightarrow a=2\sqrt{3}\)
\(\Leftrightarrow x^4-x^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Điều kiện xác định y>o và x>2
\(\dfrac{5}{x-2}+\dfrac{3}{y}=8\left(1\right)\)
\(\dfrac{2}{x-2}-\dfrac{3}{y}=1\left(2\right)\)
Lấy 1+2 => \(\dfrac{7}{x-2}=9=>7=9.\left(x-2\right)=>x=\dfrac{25}{9}\)(Tm)
Thay x=\(\dfrac{25}{9}\) vào 1 hoặc 2 => \(\dfrac{5}{\dfrac{25}{9}-2}+\dfrac{3}{y}=8=>y=\dfrac{21}{11}\)(TM)
Vậy.........
Pt tương đương:
\(\dfrac{x^2+2x+1-x}{x^2+2x+1}+\dfrac{x^2+4x+1-x}{x^2+4x+1}=\dfrac{19}{12}\Leftrightarrow1-\dfrac{x}{x^2+2x+1}+1-\dfrac{x}{x^2+4x+1}=\dfrac{19}{12}\)
\(\Leftrightarrow-\dfrac{x}{x^2+2x+1}-\dfrac{x}{x^2+4x+1}+\dfrac{5}{12}=0\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{x}{x^2+2x+1}\right)+\left(\dfrac{1}{6}-\dfrac{x}{x^2+4x+1}\right)=0\)
\(\Leftrightarrow\dfrac{x^2-2x+1}{4\left(x^2+2x+1\right)}+\dfrac{x^2-2x+1}{6\left(x^2+4x+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{1}{4\left(x^2+2x+1\right)}+\dfrac{1}{6\left(x^2+4x+1\right)}\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\dfrac{\left(10x^2+32x+10\right)}{24\left(x+1\right)^2\left(x^2+4x+1\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\10x^2+32x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+\sqrt{39}}{5}\\x=\dfrac{-8-\sqrt{39}}{5}\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
=>\(x^3-x+x-1=2x^2+x-1\)
=>x^3-2x^2-x=0
=>x(x^2-2x-1)=0
=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)
c: =>(x-1)(x-2) căn 2x-3=0
=>\(x\in\left\{\dfrac{3}{2};2\right\}\)
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
TH1: x>-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)
=>-6x^2+3x-4x+2=x^2+2x
=>-7x^2-3x+2=0
=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)
TH2: x<-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)
=>6x^2-3x+4x-2=x^2+2x
=>6x^2+x-2=x^2+2x
=>5x^2-x-2=0
mà x<-2
nên \(x\in\varnothing\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=\dfrac{85}{3}\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=\dfrac{13}{3}\end{matrix}\right.\)
\(a=x+y\); \(b=x-y\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+b^2+\dfrac{3}{a^2}=\dfrac{85}{3}\\a+b+\dfrac{1}{a}=\dfrac{13}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(a+\dfrac{1}{a}\right)^2-6+b^2=\dfrac{85}{3}\\a+\dfrac{1}{a}=\dfrac{13}{3}-b\end{matrix}\right.\)
\(\Rightarrow3\left(\dfrac{13}{3}-b\right)^2-6+b^2=\dfrac{85}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}b=1\\b=\dfrac{11}{2}\end{matrix}\right.\)đến đây tự làm nha
`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`
`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`
`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`
`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`
`=>x+2019=0`
`<=>x=-2019`
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)
\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)
\(\Leftrightarrow\left(x+2019\right)\text{=}0\)
\(\Leftrightarrow x\text{=}-2019\)