K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2023

`[x+35]/1984-[x+30]/1989+[x+19]/2000+[x+23]/[1996=-2`

`<=>[x+35]/1984+1-[x+30]/1989-1+[x+19]/2000+1+[x+23]/1996+1=0`

`<=>[x+2019]/1984-[x+2019]/1989+[x+2019]/2000+[x+2019]/1996=0`

`<=>(x+2019)(1/1984-1/1989+1/2000+1/1996)=0`

  `=>x+2019=0`

`<=>x=-2019`

8 tháng 2 2023

\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)

\(\Leftrightarrow\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}+3-1\text{=}0\)

\(\Leftrightarrow\left(\dfrac{x+35}{1984}+1\right)-\left(\dfrac{x+30}{1989}+1\right)+\left(\dfrac{x+19}{2000}+1\right)+\left(\dfrac{x+23}{1996}+1\right)\text{=}0\)

\(\Leftrightarrow\dfrac{x+2019}{1984}-\dfrac{x+2019}{1989}+\dfrac{x+2019}{2000}+\dfrac{x+2019}{1996}\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\left(\dfrac{1}{1984}-\dfrac{1}{1989}+\dfrac{1}{2000}+\dfrac{1}{1996}\right)\text{=}0\)

\(\Leftrightarrow\left(x+2019\right)\text{=}0\)

\(\Leftrightarrow x\text{=}-2019\)

3 tháng 10 2018

https://diendantoanhoc.net/topic/163051-x-fracxsqrtx2-1-frac3512/

17 tháng 8 2017

b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)

\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)

Bình phương 2 vế rút gọn

\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)

Đặt \(\sqrt{x^4-x^2}=a\)

\(\Rightarrow a^2-4\sqrt{3}a+12=0\)

\(\Leftrightarrow a=2\sqrt{3}\)

\(\Leftrightarrow x^4-x^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

17 tháng 8 2017

Câu a xem lại đề đúng không b. Do nghiệm xấu lắm

22 tháng 7 2018

Điều kiện xác định y>o và x>2

\(\dfrac{5}{x-2}+\dfrac{3}{y}=8\left(1\right)\)

\(\dfrac{2}{x-2}-\dfrac{3}{y}=1\left(2\right)\)

Lấy 1+2 => \(\dfrac{7}{x-2}=9=>7=9.\left(x-2\right)=>x=\dfrac{25}{9}\)(Tm)

Thay x=\(\dfrac{25}{9}\) vào 1 hoặc 2 => \(\dfrac{5}{\dfrac{25}{9}-2}+\dfrac{3}{y}=8=>y=\dfrac{21}{11}\)(TM)

Vậy.........

NV
10 tháng 11 2018

Pt tương đương:

\(\dfrac{x^2+2x+1-x}{x^2+2x+1}+\dfrac{x^2+4x+1-x}{x^2+4x+1}=\dfrac{19}{12}\Leftrightarrow1-\dfrac{x}{x^2+2x+1}+1-\dfrac{x}{x^2+4x+1}=\dfrac{19}{12}\)

\(\Leftrightarrow-\dfrac{x}{x^2+2x+1}-\dfrac{x}{x^2+4x+1}+\dfrac{5}{12}=0\)

\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{x}{x^2+2x+1}\right)+\left(\dfrac{1}{6}-\dfrac{x}{x^2+4x+1}\right)=0\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{4\left(x^2+2x+1\right)}+\dfrac{x^2-2x+1}{6\left(x^2+4x+1\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\dfrac{1}{4\left(x^2+2x+1\right)}+\dfrac{1}{6\left(x^2+4x+1\right)}\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\dfrac{\left(10x^2+32x+10\right)}{24\left(x+1\right)^2\left(x^2+4x+1\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\10x^2+32x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+\sqrt{39}}{5}\\x=\dfrac{-8-\sqrt{39}}{5}\end{matrix}\right.\)

a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

=>\(x^3-x+x-1=2x^2+x-1\)

=>x^3-2x^2-x=0

=>x(x^2-2x-1)=0

=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)

c: =>(x-1)(x-2) căn 2x-3=0

=>\(x\in\left\{\dfrac{3}{2};2\right\}\)

15 tháng 4 2018

a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)

ĐK:\(x\ne0\)

\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)

15 tháng 4 2018

\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)

16 tháng 11 2022

TH1: x>-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)

=>-6x^2+3x-4x+2=x^2+2x

=>-7x^2-3x+2=0

=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)

TH2: x<-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)

=>6x^2-3x+4x-2=x^2+2x

=>6x^2+x-2=x^2+2x

=>5x^2-x-2=0

mà x<-2

nên \(x\in\varnothing\)

12 tháng 1 2018

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{3}{\left(x+y\right)^2}=\dfrac{85}{3}\\\left(x+y\right)+\left(x-y\right)+\dfrac{1}{x+y}=\dfrac{13}{3}\end{matrix}\right.\)

\(a=x+y\); \(b=x-y\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+b^2+\dfrac{3}{a^2}=\dfrac{85}{3}\\a+b+\dfrac{1}{a}=\dfrac{13}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(a+\dfrac{1}{a}\right)^2-6+b^2=\dfrac{85}{3}\\a+\dfrac{1}{a}=\dfrac{13}{3}-b\end{matrix}\right.\)

\(\Rightarrow3\left(\dfrac{13}{3}-b\right)^2-6+b^2=\dfrac{85}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}b=1\\b=\dfrac{11}{2}\end{matrix}\right.\)đến đây tự làm nha