Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{x\left(x^2-1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
=>\(x^3-x+x-1=2x^2+x-1\)
=>x^3-2x^2-x=0
=>x(x^2-2x-1)=0
=>x=0 hoặc \(x\in\left\{1+\sqrt{2};1-\sqrt{2}\right\}\)
c: =>(x-1)(x-2) căn 2x-3=0
=>\(x\in\left\{\dfrac{3}{2};2\right\}\)
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
1,\(pt\Leftrightarrow11x^2-5x+6=x^3+5x^2+6x\)
\(\Leftrightarrow x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)(tm)
b)\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\\sqrt{x^2-3x+8}=x-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=\left(x-4\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=x^2-8x+16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\5x=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x=\dfrac{8}{5}\left(loại\right)\end{matrix}\right.\)=> pt vô nghiệm
c)\(\left\{{}\begin{matrix}8-x\ge0\\x^2-5x-2=\left(8-x\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x^2-5x-2=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\11x=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=6\left(nhận\right)\end{matrix}\right.\)
\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ:\(x\ne2;x\ne-2\)
\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)
\(\Leftrightarrow\)\(9x+18=0\)
\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.
b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)
PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)
\(\Leftrightarrow9x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)
c,\(ĐKXĐ:x\ge2\)
Bình phương 2 vế ta được:
\(x^2-4-x^2+2x-1=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)
lời giải
a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)
(1)\(\Leftrightarrow\)
\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)
\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)
Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)
(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)
Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)
TH1: x>-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)
=>-6x^2+3x-4x+2=x^2+2x
=>-7x^2-3x+2=0
=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)
TH2: x<-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)
=>6x^2-3x+4x-2=x^2+2x
=>6x^2+x-2=x^2+2x
=>5x^2-x-2=0
mà x<-2
nên \(x\in\varnothing\)