Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)
Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)
Khi đó phương trình ban đầu trở thành :
\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)
+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)
\(\Leftrightarrow x=-2\)
+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)
\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)
\(\Leftrightarrow x=2\)
Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)
\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)
\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Rightarrow x=\pm2\). Vậy...
Đặt \(a=\sqrt{x^2+7}\) ta có :
a2 + 4x = ( x + 4 ) a
⇔ a2 - 4a - ax + 4x = 0
⇔ ( a - 4 ) ( a - x ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}a=4\\a=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+7=16\\x^2+7=x^2\end{matrix}\right.\Leftrightarrow x^2=9\Leftrightarrow x=3\)
- ĐKXĐ : \(x^2+7\ge0\) ( Luôn đúng \(\forall x\) )
Ta có : \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
- Đặt \(a=\sqrt{x^2+7}\) ta được phương trình :\(a^2+4x=a\left(x+4\right)\)
( ĐKXĐ : \(a\ge0\) )
=> \(a^2+4x-ax-4a=0\)
=> \(a\left(a-x\right)-4\left(a-x\right)=0\)
=> \(\left(a-4\right)\left(a-x\right)=0\)
=> \(\left[{}\begin{matrix}a-4=0\\a-x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=4\\a=x\end{matrix}\right.\) ( TM )
- Thay \(a=\sqrt{x^2+7}\) vào phương trình trên ta được :
\(\left[{}\begin{matrix}\sqrt{x^2+7}=4\\\sqrt{x^2+7}=x\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+7=16\\x^2+7=x^2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2=9\\0=7\left(VL\right)\end{matrix}\right.\)
=> \(x=\pm3\) ( TM )
Vậy phương trình có nghiệm là \(x=\pm3\) .
Bài 1:
ĐKXĐ: \(x\ge2\)
PT \(\Leftrightarrow x^2-6x+9+3\left(x-3\right)+\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+3\left(x-3\right)+\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x+\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x-2}+1}\right]=0\)
Cái ngoặc to hiển nhiên > 0 với mọi \(x\ge2\) nên vô nghiệm.
Vậy x = 3
Bài 2:
HPT \(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\\frac{19}{7}x^2-\frac{19}{7}xy+\frac{19}{7}y^2=19\left(x-y\right)^2\end{cases}}\)
Lấy pt dưới trừ pt trên:
\(\frac{12}{7}x^2-\frac{26}{7}xy+\frac{12}{7}y^2=0\Leftrightarrow\frac{2}{7}\left(2x-3y\right)\left(3x-2y\right)=0\)
Làm nốt ạ!
bạn ơi cho mk hỏi dòng thứ 3 từ trên xuống của bài 1 là sao vậy ????
đk tự giải nhé
với x tjỏa mãn đk ta có
\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)
\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)
đặt \(\sqrt{x^3+3x}=a\)
ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)
\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)
\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)
đến đây tự làm nhé
\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{2}\)
\(=\left(2\sqrt{7}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{2}\)
\(=2\sqrt{7}.\sqrt{7}-\sqrt{12}.\sqrt{7}-\sqrt{7}.\sqrt{7}+2\sqrt{2}\)
\(=14-\sqrt{84}-7+2\sqrt{2}\)
\(=7-\sqrt{84}+2\sqrt{2}\)
Chúc bạn học tốt!!!
\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)
\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)
\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)
Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)
Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)
\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)
Tự lm tiếp nha
bài 1:
a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)
\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)
b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)
\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)
c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)
\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)
\(=5-4\)
\(=1\left(hđt.3\right)\)
d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)
\(=5-3\)
\(=2\)
e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)
\(=2\left(2-4+9\right)\)
\(=2.7=14\)
f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
\(=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}+1\)
\(=3-\sqrt{5}\)
g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\sqrt{3}-\sqrt{6}-2\)
h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)
\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)
\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)
\(=2-\sqrt{5}-1+2\sqrt{5}\)
\(=1-\sqrt{5}\)
bài 2)
a) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)
\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)
Vậy x = 3 hoặc x = -2
\(\sqrt{\left(x^2-7\right)^2}=10\\ \Leftrightarrow\left|x^2-7\right|=10\left(1\right)\)
Nếu \(x^2\ge7\Leftrightarrow x\ge\sqrt{7}\) thì:
(1) \(\Leftrightarrow x^2-7=10\)
\(\Leftrightarrow x^2=10+7=17\\ \Leftrightarrow x=\left[{}\begin{matrix}\sqrt{17}\left(nhận\right)\\-\sqrt{17}\left(loại\right)\end{matrix}\right.\)
Nếu \(x^2< 7\Leftrightarrow x< \sqrt{7}\) thì:
(1) \(\Leftrightarrow7-x^2=10\)
\(\Leftrightarrow x^2=7-10=-3\left(loại\right)\)
Vậy PT có nghiệm \(x=\sqrt{17}\)
\(\sqrt{\left(x^2-7\right)^2}=10\)
=>|x^2-7|=10
=>x^2-7=10 hoặc x^2-7=-10
=>x^2=17(nhận) hoặc x^2=-3(loại)
=>x^2=17
=>\(x=\pm\sqrt{17}\)