Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)
\(\Leftrightarrow6x^2+15x-26=0\)
b/ ĐKXĐ: ...
Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)
\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)
Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x-42=0\)
d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)
Đặt \(\sqrt{x^2+x+4}=a>0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)
e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)
Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)
\(\frac{a^2-4}{3}+a-2=0\)
\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)
ĐKXĐ: \(0\le x\le6\)
Đặt \(\sqrt{6x-x^2}=t\ge0\)
\(t-2t^2+15=0\Leftrightarrow-2t^2+t+15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-\frac{5}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{6x-x^2}=3\Leftrightarrow x^2-6x+9=0\Rightarrow x=3\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
Đặt \(\left\{{}\begin{matrix}2x+3=a\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
Pt trở thành:
\(a^2+2b^2-3ab=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=2x+3\\2\sqrt{x^2-x+1}=2x+3\end{matrix}\right.\)
\(\Leftrightarrow...\)
2x-x^2 =t
<=>t^2 -6t+7 =0
t=-1 loại
t=7 => \(\left[{}\begin{matrix}x_1=1-2\sqrt{2}\\x_2=1+2\sqrt{2}\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\le\frac{16}{3}\end{matrix}\right.\)
\(2x^2-\left(3y-6\right)x+y^2-8y-20=0\)
\(\Delta=\left(3y-6\right)^2-8\left(y^2-8y-20\right)=y^2+28y+196=\left(y+14\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3y-6+y+14}{4}=y+2\\x=\frac{3y-6-y-14}{4}=\frac{y-10}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x-2\\y=2x+10\end{matrix}\right.\)
- Với \(y=2x+10\ge-2.2+10=6>\frac{16}{3}\) ko phù hợp ĐKXĐ (loại)
- Với \(y=x-2\)
\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)
\(\Leftrightarrow x^2+8-4\sqrt{x+2}-\sqrt{22-3x}=0\)
\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(x+4-3\sqrt{x+2}\right)+\frac{1}{3}\left(14-x-3\sqrt{22-3x}\right)=0\)
\(\Leftrightarrow x^2-x-2+\frac{4}{3}\left(\frac{x^2-x-2}{x+4+3\sqrt{x+2}}\right)+\frac{1}{3}\left(\frac{x^2-x-2}{14-x+3\sqrt{22-3x}}\right)=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(....\right)=0\) (ngoặc phía sau luôn dương)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-3\\x=2\Rightarrow y=0\end{matrix}\right.\)
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
Điều kiện xác định của pt : \(6x^2-12x+7\ge0\) => Với mọi số thực thì pt xác định
Ta có : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow-\left(6x^2-12x+7\right)+6\sqrt{6x^2-12x+7}+7=0\)
Đặt \(t=\sqrt{6x^2-12x+7},t\ge0\) . pt trở thành : \(-t^2+6t+7=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{array}\right.\)
Với \(t=7\) ta có pt : \(6x^2-12x+7=49\)
\(\Leftrightarrow6x^2-12x-42=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1-2\sqrt{2}\\x=1+2\sqrt{2}\end{array}\right.\)