Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>x2(x+y)+y2(x+y)=2001
<=>(x+y)(x2+y2)=2001
=>x+y, x2+y2 E Ư(2001)={1;3;23;29;69;87;667;2001}
Rồi xét các trường hợp => x,y
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
- \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
- \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận