Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cái khó là sử lý điều kiện thôi nên t làm phần đó thôi nhé.
Từ điều kiện suy ra được.
log\(\sqrt{3}\)(3x + 3y) + (3x + 3y) = log\(\sqrt{3}\)(x2 + y2 + xy + 2) + (x2 + y2 + xy + 2)
Dễ thấy hàm số f(t) = log\(\sqrt{3}\)(t) + t đồng biến trên (0; +\(\infty\)) nên
=> 3x + 3y = x2 + y2 + xy + 2
\(\begin{cases}3^x-3^y=\left(y-x\right)\left(xy+m\right)\left(1\right)\\x^2+y^2=m\left(2\right)\end{cases}\)
Thay (2) vào (1) ta có : \(3^x-3^y=\left(y-x\right)\left(xy+x^2+y^2\right)\)
\(\Leftrightarrow3^x-3^y=y^3-x^3\)
\(\Leftrightarrow3^x+x^3=3^y+y^3\)
\(\Leftrightarrow f\left(x\right)=f\left(y\right)\)
Xét hàm số \(f\left(t\right)=3'+t^3\)
- Miền xác định D=R
- Đạo hàm \(f'\left(x\right)=\ln3.3'+3t^2>0\) . Hàm đồng biến
Do dó x=y. Thay vào phương trình (2) ta có :
\(x^2+x^2=m\Leftrightarrow2x^2=m\Leftrightarrow x^2=\frac{m}{2}\)
Vậy để hệ có nghiệm : \(m\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)
\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)
\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)
Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)
P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)
cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy
ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy
8(x+y)= (x+y)^2+y(x+y)
(x+y)((x+y)+y-8)=0 xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe
cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=2\left(x+y\right)^2+2\left(x^2+y^2\right)+1\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\x^2+y^2=b>0\end{matrix}\right.\) với \(a^2\le2b\)
\(\Rightarrow ab=2a^2+2b+1\)
\(\Leftrightarrow b\left(a-2\right)=2a^2+1\)
- Với \(a=2\) ko thỏa mãn
- Với \(a\ne2\Rightarrow b=\frac{2a^2+1}{a-2}=2\left(a+2\right)+\frac{9}{a-2}\)
\(\Rightarrow a-2=Ư\left(9\right)=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-7;1;3;11\right\}\)
\(\Rightarrow b=\left\{-11;-3;19;27\right\}\)
Kết hợp điều kiện \(\left\{{}\begin{matrix}b\ge0\\a^2\le2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=19\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\x^2+y^2=19\end{matrix}\right.\) ko tồn tại x, y nguyên thỏa mãn