\(x^2+y^2=4y-xy-1\\ \\ \\ y\left(x+y\right)^2=2x^2+7y+2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Bài 2: Mình nghĩ điều kiện sửa thành $a,b\in\mathbb{N}$ thôi thì đúng hơn.
ĐKĐB $\Leftrightarrow \log_2[(2x+1)(y+2)]^{y+2}=8-(2x-2)(y+2)$

$\Leftrightarrow (y+2)\log_2[(2x+1)(y+2)]=8-(2x-2)(y+2)$

$\Leftrightarrow (y+2)[\log_2[(2x+1)(y+2)]+(2x-2)]=8$

$\Leftrightarrow \log_2[(2x+1)(y+2)]+(2x-2)]=\frac{8}{y+2}$

$\Leftrightarrow \log_2(2x+1)+\log_2(y+2)+(2x+1)-3=\frac{8}{y+2}$
$\Leftrightarrow \log_2(2x+1)+(2x+1)=\frac{8}{y+2}+3-\log_2(y+2)=\frac{8}{y+2}+\log_2(\frac{8}{y+2})(*)$

Xét hàm $f(t)=\log_2t+t$ với $t>0$

$f'(t)=\frac{1}{t\ln 2}+1>0$ với mọi $t>0$

Do đó hàm số đồng biến trên TXĐ
$\Rightarrow (*)$ xảy ra khi mà $2x+1=\frac{8}{y+2}$

$\Leftrightarrow 8=(2x+1)(y+2)$

Áp dụng BĐT AM-GM:

$8=(2x+1)(y+2)\leq \left(\frac{2x+1+y+2}{2}\right)^2$

$\Rightarrow 2\sqrt{2}\leq \frac{2x+y+3}{2}$

$\Rightarrow 2x+y\geq 4\sqrt{2}-3$

Vậy $P_{\min}=4\sqrt{2}-3$

$\Rightarrow a=4; b=2; c=-3$

$\Rightarrow a+b+c=3$

Đáp án B.

NV
23 tháng 8 2020

2.

\(\Leftrightarrow\left(y+2\right)log_2\left(2x+1\right)\left(y+2\right)=8-\left(2x-2\right)\left(y+2\right)\)

\(\Leftrightarrow log_2\left(2x+1\right)\left(y+2\right)=\frac{8}{y+2}-2x+2\)

\(\Leftrightarrow log_2\left(2x+1\right)+log_2\left(y+2\right)=\frac{8}{y+2}-2x+2\)

\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=-log_2\left(y+2\right)+3+\frac{8}{y+2}\)

\(\Leftrightarrow log_2\left(2x+1\right)+\left(2x+1\right)=log_2\left(\frac{8}{y+2}\right)+\frac{8}{y+2}\)

Xét hàm \(f\left(t\right)=log_2t+t\Rightarrow f'\left(t\right)=\frac{1}{t.ln2}+1>0;\forall t>0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow2x+1=\frac{8}{y+2}\)

\(\Rightarrow2x=\frac{8}{y+2}-1=\frac{6-y}{y+2}\)

\(\Rightarrow P=2x+y=y+\frac{6-y}{y+2}=y+\frac{8}{y+2}-1\)

\(\Rightarrow P=y+2+\frac{8}{y+2}-3\ge2\sqrt{\frac{8\left(y+2\right)}{y+2}}-3=4\sqrt{2}-3\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\\c=-3\end{matrix}\right.\) \(\Rightarrow a+b+c=3\)

NV
20 tháng 9 2020

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=2\left(x+y\right)^2+2\left(x^2+y^2\right)+1\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\x^2+y^2=b>0\end{matrix}\right.\) với \(a^2\le2b\)

\(\Rightarrow ab=2a^2+2b+1\)

\(\Leftrightarrow b\left(a-2\right)=2a^2+1\)

- Với \(a=2\) ko thỏa mãn

- Với \(a\ne2\Rightarrow b=\frac{2a^2+1}{a-2}=2\left(a+2\right)+\frac{9}{a-2}\)

\(\Rightarrow a-2=Ư\left(9\right)=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-7;1;3;11\right\}\)

\(\Rightarrow b=\left\{-11;-3;19;27\right\}\)

Kết hợp điều kiện \(\left\{{}\begin{matrix}b\ge0\\a^2\le2b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=19\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\x^2+y^2=19\end{matrix}\right.\) ko tồn tại x, y nguyên thỏa mãn

8 tháng 12 2019

ĐKXĐ: \(x\ge0\)

Phương trình (1) \(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}\left(\sqrt{y^2+1}+y\right)=\sqrt{x}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\frac{\sqrt{x}\left(\sqrt{y^2+1}+y\right)}{\left(\sqrt{x+1}+1\right)}=1\left(3\right)\end{matrix}\right.\)

\(\sqrt{x}=0\Leftrightarrow x=0\Rightarrow y=-2\)

\(\left(3\right)\Rightarrow\left(\sqrt{y^2+1}-y\right)\left(\sqrt{x+1}+1\right)=\sqrt{x}=\left(\sqrt{y^2+1}+y\right)\left(\sqrt{x+1}-1\right)\Leftrightarrow\sqrt{y^2+1}=y\sqrt{x+1}\Rightarrow y^2+1=xy^2+y^2\Leftrightarrow xy^2=1\left(4\right)\)

Với y=0 hệ vô nghiệm

Với y khác 0 thay (4) vào pt 1 được \(\left(\sqrt{\frac{1}{y^2}+1}-1\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{\frac{1}{y^2}}\\ \Leftrightarrow\left(\sqrt{y^2+1}-\left|y\right|\right)\left(\sqrt{y^2+1}+y\right)=1\left(5\right)\)

Với y<0 thì (5): \(\left(\sqrt{y^2+1}+y\right)^2=1\) vô nghiệm

Ta thấy (5) đúng với mọi y

Thay (4) vào pt (2) suy ra \(y^7+2y^6+y^5-2y^2-2=0\Leftrightarrow\left(y-1\right)\left(y^6+3y^5+4y^4+4y^3+4y^2+4y+2\right)=0\)

Phương trình này có nghiệm duy nhất là y=1 trên (0,dương VC)=>x=1

Vậy hệ có hai nghiệm là (1,1) và (0,-2)

NV
17 tháng 8 2020

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

\(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\Rightarrow1\le y\le\frac{7}{3}\)

\(y^2+\left(x-4\right)y+x^2-3x+4=0\)

\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\ge0\)

\(\Leftrightarrow-3x^2+4x\ge0\Rightarrow0\le x\le\frac{4}{3}\)

Mặt khác ta có:

\(P=3x^3-3y^3+20x^2+5y^2+39x+2\left(-x^2-y^2+4y+3x-4\right)\)

\(P=\left(3x^3+18x^2+45x\right)+\left(-3y^3+3y^2+8y-8\right)=f\left(x\right)+f\left(y\right)\)

Xét hàm \(f\left(x\right)=3x^3+18x^2+45x\) trên \(\left[0;\frac{4}{3}\right]\)

\(f'\left(x\right)=9x^2+36x+45>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)

Xét \(f\left(y\right)=-3y^3+3y^2+8y-8\) trên \(\left[1;\frac{7}{3}\right]\)

\(f'\left(y\right)=-9y^2+6y+8=0\Rightarrow y=\frac{4}{3}\)

\(f\left(1\right)=0\) ; \(f\left(\frac{4}{3}\right)=\frac{8}{9}\) ; \(f\left(\frac{7}{3}\right)=-\frac{100}{9}\)

\(\Rightarrow f\left(y\right)_{max}=f\left(\frac{4}{3}\right)=\frac{8}{9}\Rightarrow f\left(y\right)\le\frac{8}{9}\)

\(\Rightarrow P\le\frac{892}{9}+\frac{8}{9}=100\)

1 tháng 6 2016

cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy

ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy

    8(x+y)= (x+y)^2+y(x+y)

 (x+y)((x+y)+y-8)=0  xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe

1 tháng 6 2016

cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số