K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2019

\(\Rightarrow4^x-3.2^{x+1}+2=\sqrt{2}^{2\left(x+2\right)}\)

\(\Leftrightarrow4^x-6.2^x+2=2^{x+2}=4.2^x\)

Đặt \(2^x=a>0\Rightarrow a^2-6a+2=4a\)

\(\Leftrightarrow a^2-10a+2=0\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{23}\\a=5-\sqrt{23}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2^x=5+\sqrt{23}\\2^x=5-\sqrt{23}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=log_2\left(5+\sqrt{23}\right)\\x=log_2\left(5-\sqrt{23}\right)\end{matrix}\right.\)

NV
14 tháng 4 2019

ĐKXĐ: \(x>0\)

\(log_{a^4}x-log_{a^2}x+log_ax=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}log_ax-\frac{1}{2}log_ax+log_ax=\frac{3}{4}\)

\(\Leftrightarrow\frac{3}{4}log_ax=\frac{3}{4}\)

\(\Leftrightarrow log_ax=1\)

\(\Rightarrow x=a\)

1 tháng 3 2016

bài a, nhứ đã giải ở câu trc:
b, ĐK: 0<x, x khác 1.
ta có: log2x64= 6.log2x2= 6( \(\frac{1}{1+log_2x}\))

logx216=2logx2=\(\frac{2}{log_2x}\)

Thay vào pt:
6( \(\frac{1}{1+log_2x}\)) +\(\frac{2}{log_2x}\) =3

đặt  T=log2x, ĐK. t>0
<=>6\(\frac{1}{1+t}\) +\(\frac{2}{t}\)=3

.......

<=> t=2( nghiệm -\(\frac{1}{3}\)<0 loại)

.....

<=>x=4(thõa)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Đặt \(\log_2x=t\Rightarrow x=2^t\).

Để \(x\in (0;1)\Leftrightarrow 0< 2^t< 1\Leftrightarrow t< 0\)

PT trở thành:

\(t^2+t+m=0\) và ta cần tìm m để pt có nghiệm âm

Điều kiện để pt có nghiệm: \(\Delta=1-4m\geq 0\Leftrightarrow m\leq \frac{1}{4}\) (1)

Áp dụng hệ thức Viete, để PT có nghiệm âm thì:

\(\left\{\begin{matrix} t_1+t_2< 0\\ t_1t_2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -1< 0\\ m> 0\end{matrix}\right.\Leftrightarrow m> 0\) (2)

Từ (1)(2) suy ra \(0< m\leq \frac{1}{4}\)

19 tháng 12 2017

thks bạn.

1.Tính các giá trị biểu thức sau:a)510000.log52-59999.log52-...-53.log52-52.log52=?b)(x2+1).4100000-(x2+1).499999,5-...-(x2+1).43.5-(x2+1).43=?2.Giải ptrình bậc cao sau:a)x.(x2+y)150000-x.(x2+y)149999-...-x.(x2+y)2-x3-xy-2=0b)xy(2y+1)50000-xy(2y+1)49999-...-xy(2y+1)2-2xy2-3=0c)x2(x+1)10000-x2(x+1)9999-...-x2(x+1)2-x2(x+1)-x2-1=0d)x.(\(\sqrt{x+1}\))10000-x.(\(\sqrt{x+1}\))9998-...-x.(\(\sqrt{x+1}\))4-x-3=03.Tính giá trị tại vị trí gián đoạn...
Đọc tiếp

1.Tính các giá trị biểu thức sau:

a)510000.log52-59999.log52-...-53.log52-52.log52=?

b)(x2+1).4100000-(x2+1).499999,5-...-(x2+1).43.5-(x2+1).43=?

2.Giải ptrình bậc cao sau:

a)x.(x2+y)150000-x.(x2+y)149999-...-x.(x2+y)2-x3-xy-2=0

b)xy(2y+1)50000-xy(2y+1)49999-...-xy(2y+1)2-2xy2-3=0

c)x2(x+1)10000-x2(x+1)9999-...-x2(x+1)2-x2(x+1)-x2-1=0

d)x.(\(\sqrt{x+1}\))10000-x.(\(\sqrt{x+1}\))9998-...-x.(\(\sqrt{x+1}\))4-x-3=0

3.Tính giá trị tại vị trí gián đoạn sau:

a)250000-249999-...-24-23=?Biết gián đoạn tại vị trí thứ 4

b)710000.log72-79999.log72-...-72.log72-7log72=?Biết gián đoạn tại vị trí 3->5

c)22+23+...+24999+25000=?Biết gián đoạn tại vị trí thứ 350 và vị trí 600

4.Thực hiện các yêu cầu sau:

Cho pt M:        x.(x+1)50000-x.(x+1)49999-...-x.(x+1)3-x.(x+1)2-n=0

a.Xác định x=?

b.Tính n=?

c.Số nào dưới đây là số nguyên tố:

A.n+1/n-1

B.n+2/n-2

C.n+3/n-3

D.n+4/n-4

d.Xác định phương trình đồng dạng bậc 20(¶20)?

5.Cho ptrình bậc 2 sau:x2-2x=0

a.Xác định hàm P=?

A.P=(x2)x^2-2x   B.P=(x2-2x)/(x2-2x)  C.P=2xx^2  D.(x2-2x)x^2-2x

b.Xác định hàm P(x)?Biết Q(x)=2x+1

A.P(x)=2x  B.P(x)=2.(x+1)  C.P(x)=2.(x+2)  D.P(x)=2.(x+3)

c.Tính lim(P/Q(x))=?

A.0  B.1  C.2  D.3

d.Ptrình bậc cao:250000-249999-...-22-21 ~ vs hàm nào cuả pt bậc 2?

A.2P=2.2xx^2-2x  B.2P=2.x2.2x  C.2P=2.22x   D.2P=2.42x

e.Đồ thị hàm bậc cao nằm trên:

A.Trục tung  B.Trục hoành  C.A,B đúng  D.A,C sai

f.Khi nào P=P(x)?

A.Q(x)=0  B.P(x)=0  C.P=0  D.Q(x)=P

g.Hãy biến ptrình bậc 3 sau về ptrình bậc cao:x3-x=0?

A.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3-x=0

B.(x3-x)50000-(x3-x)49999-...-(x3-x)2-x3+x=0

C.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3-x=0

D.(x3+x)50000-(x3+x)49999-...-(x3+x)2-x3+x=0

h.Từ ptrình bậc 3 ở câu g so sánh P1=xx^3-x và P2=x3.(x^3-x)

A.P1>P2  B.P1=P2  C.P1<P2  D.P1~P2

i.Từ câu h,hãy tính giá trị biểu thức sin(P1-1)+cos(P2-1)+tan(P1P2-P1-P2+1)=?

A.-3    B.-1   C.1   D.3

 

 

 

Giúp mik với

0
AH
Akai Haruma
Giáo viên
9 tháng 11 2017

Lời giải:

a) ĐKXĐ:......

Ta có: \(\log_{2x+1}(3-x^2)=2\)

\(\Leftrightarrow 3-x^2=(2x+1)^2\)

\(\Leftrightarrow 5x^2+4x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)

Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm

b) ĐKXĐ:....

Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))

\(\Leftrightarrow 2a+1=2^a\)

Xét hàm \(y(a)=2^a-2a-1\)

\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)

Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)

Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2017

Câu c)

ĐKXĐ: \(x>-1\)

Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)

Ta thấy:

\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ

\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ

Do đó, PT chỉ có thể có duy nhất một nghiệm

Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình