Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow4^x-3.2^{x+1}+2=\sqrt{2}^{2\left(x+2\right)}\)
\(\Leftrightarrow4^x-6.2^x+2=2^{x+2}=4.2^x\)
Đặt \(2^x=a>0\Rightarrow a^2-6a+2=4a\)
\(\Leftrightarrow a^2-10a+2=0\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{23}\\a=5-\sqrt{23}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=5+\sqrt{23}\\2^x=5-\sqrt{23}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=log_2\left(5+\sqrt{23}\right)\\x=log_2\left(5-\sqrt{23}\right)\end{matrix}\right.\)
ĐKXĐ: \(x>0\)
\(log_{a^4}x-log_{a^2}x+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}log_ax-\frac{1}{2}log_ax+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}log_ax=\frac{3}{4}\)
\(\Leftrightarrow log_ax=1\)
\(\Rightarrow x=a\)
bài a, nhứ đã giải ở câu trc:
b, ĐK: 0<x, x khác 1.
ta có: log2x64= 6.log2x2= 6( \(\frac{1}{1+log_2x}\))
logx216=2logx2=\(\frac{2}{log_2x}\)
Thay vào pt:
6( \(\frac{1}{1+log_2x}\)) +\(\frac{2}{log_2x}\) =3
đặt T=log2x, ĐK. t>0
<=>6\(\frac{1}{1+t}\) +\(\frac{2}{t}\)=3
.......
<=> t=2( nghiệm -\(\frac{1}{3}\)<0 loại)
.....
<=>x=4(thõa)
Lời giải:
Đặt \(\log_2x=t\Rightarrow x=2^t\).
Để \(x\in (0;1)\Leftrightarrow 0< 2^t< 1\Leftrightarrow t< 0\)
PT trở thành:
\(t^2+t+m=0\) và ta cần tìm m để pt có nghiệm âm
Điều kiện để pt có nghiệm: \(\Delta=1-4m\geq 0\Leftrightarrow m\leq \frac{1}{4}\) (1)
Áp dụng hệ thức Viete, để PT có nghiệm âm thì:
\(\left\{\begin{matrix} t_1+t_2< 0\\ t_1t_2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -1< 0\\ m> 0\end{matrix}\right.\Leftrightarrow m> 0\) (2)
Từ (1)(2) suy ra \(0< m\leq \frac{1}{4}\)
Lời giải:
a) ĐKXĐ:......
Ta có: \(\log_{2x+1}(3-x^2)=2\)
\(\Leftrightarrow 3-x^2=(2x+1)^2\)
\(\Leftrightarrow 5x^2+4x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)
Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm
b) ĐKXĐ:....
Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))
\(\Leftrightarrow 2a+1=2^a\)
Xét hàm \(y(a)=2^a-2a-1\)
\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)
Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)
Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)
Câu c)
ĐKXĐ: \(x>-1\)
Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)
Ta thấy:
\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ
\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ
Do đó, PT chỉ có thể có duy nhất một nghiệm
Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình