Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)
Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)
\(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)
\(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)
\(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)
Vậy \(S=\left\{1\right\}\)
Bài này lớp 9 chỉ có bình phương và bình phương mới hết nghiệm thôi em.
Giải 1 cách đẹp mắt và triệt để thì cần sử dụng kiến thức 11
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
\(ĐKXĐ:x\ge3\)
\(pt\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+3}.\sqrt{x-3}-3.\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{cases}}\)
\(TH1:\sqrt{x-3}=0\Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)
\(TH2:\sqrt{x+3}-3=0\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow\sqrt{x+3}=\sqrt{9}\Leftrightarrow x+3=9\Leftrightarrow x=9\left(tm\right)\)
Vậy pt có 2 nghiệm là 3 và 9
Copy trên mạng nè:
Input:
Open code
Result:
Plot:
Open code
Alternate forms:
Open code
Open code
Complex solutions:
Open code
Roots in the complex plane: