K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)

\(ĐKXĐ:x\ge3\)

\(pt\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+3}.\sqrt{x-3}-3.\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{cases}}\)

\(TH1:\sqrt{x-3}=0\Leftrightarrow x-3=0\Leftrightarrow x=3\left(tm\right)\)

\(TH2:\sqrt{x+3}-3=0\Leftrightarrow\sqrt{x+3}=3\)

\(\Leftrightarrow\sqrt{x+3}=\sqrt{9}\Leftrightarrow x+3=9\Leftrightarrow x=9\left(tm\right)\)

Vậy pt có 2 nghiệm là 3 và 9

14 tháng 10 2019

Nhầm , 3 và 6 chứ

1 tháng 8 2020

a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)

S = (3;6)

b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)

c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)

d) đkxđ : x khác -1

\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)

e) đk x >= 3/2

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm

f) đk x >= -3/4

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

29 tháng 11 2019

a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right) \)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy x=3

12 tháng 9 2017

1/ Đặt \(\sqrt{9-x^2}=a\ge0\)

\(\Rightarrow\frac{9-a^2}{3+a}+\frac{1}{12-4a}=1\)

\(\Leftrightarrow4a^2-20a+25=0\)

\(\Leftrightarrow a=\frac{5}{2}\)

\(\Rightarrow\sqrt{9-x^2}=\frac{5}{2}\)

\(\Leftrightarrow x^2=\frac{11}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{11}}{2}\\x=\frac{\sqrt{11}}{2}\end{cases}}\)

12 tháng 9 2017

2/ \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-1=0\)

\(\Leftrightarrow\frac{9+2x^2}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)

Đặt \(\frac{x}{\sqrt{2x^2+9}}=a\)

\(\Rightarrow\frac{1}{a^2}+2a-3=0\)

\(\Leftrightarrow2a^3-3a^2+1=0\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)=0\)

Làm nốt nhé

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq 0$

PT $\Leftrightarrow (\sqrt{x}-3)^2=0$

$\Leftrightarrow \sqrt{x}-3=0$

$\Leftrightarrow x=9$ (thỏa mãn)

c) ĐK: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$

$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$

$\Leftrightarrow 3\sqrt{x-3}=7$

$\Leftrightarrow x-3=(\frac{7}{3})^2$

$\Rightarrow x=\frac{76}{9}$

d)

ĐK: $x\geq \frac{-1}{2}$

PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$

$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$

$\Leftrightarrow 3\sqrt{2x+1}=6$

$\Leftrightarrow \sqrt{2x+1}=2$

$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)

23 tháng 10 2020

cảm ơn nha <3

6 tháng 10 2020

1) đk: \(x\ge1\)

Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)

\(\Leftrightarrow x-1=2x^2-2x\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

2) đk: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2=4x^2-4x+1\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)

=> PT vô nghiệm

3) đk: \(x\ge-1\)

Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)

\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)

\(\Leftrightarrow4\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=1\)

\(\Rightarrow x=0\)

6 tháng 10 2020

4) đk: \(x\ge2\)

Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)

\(\Leftrightarrow x-2=x\left(x-2\right)\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy x = 2

6) đk: \(x\ge-\frac{7}{5}\)

Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=2\)

\(\Leftrightarrow2x-3=2x-2\)

\(\Leftrightarrow0x=1\) vô lý

=> PT vô nghiệm