Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)
\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
d/
\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)
\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)
\(\Rightarrow3x-50^0=x+60^0+k180^0\)
\(\Rightarrow x=55^0+k90^0\)
a/
\(\Leftrightarrow sinx=2cosx\)
Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:
\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)
\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))
\(\Rightarrow x=a+k\pi\)
b/
\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-\sqrt{2}=0\\tan2x-\sqrt{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{\sqrt{2}}{2}\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=-\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
1.
\(tan^2x-5tanx+6=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)
2.
\(3cos^22x+4cos2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\pi+k2\pi\\2x=\pm arccos\left(-\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{1}{2}arccos\left(-\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)
\(\dfrac{2sinx+cosx+1}{sinx-2cosx+3}=\dfrac{1}{2}\)
\(\Leftrightarrow4sinx+2cosx+2=sinx-2cosx+3\)
\(\Leftrightarrow3sinx+4cosx=1\)
\(\Leftrightarrow\dfrac{3}{5}sinx+\dfrac{4}{5}cosx=\dfrac{1}{5}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{3}{5}=sin\varphi\\\dfrac{4}{5}=cos\varphi\end{matrix}\right.\)
\(pt\Leftrightarrow sin\varphi\cdot sinx+cos\varphi\cdot cos=\dfrac{1}{5}\)
\(\Leftrightarrow cos\cdot\left(\varphi-x\right)=\dfrac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}\varphi-x=arc\cdot cos\dfrac{1}{5}+k2\pi\\\varphi-x=-arc\cdot cos\dfrac{1}{5}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\varphi+arc\cdot cos\dfrac{1}{5}+k2\pi\\x=\varphi-arc\cdot cos\dfrac{1}{5}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)
a/ ĐKXĐ: \(cosx\ne-\frac{1}{2}\)
\(\Leftrightarrow2cosx-1=6cosx+3\)
\(\Leftrightarrow4cosx=-4\Rightarrow cosx=-1\)
\(\Rightarrow x=\pi+k2\pi\)
b/
\(\Leftrightarrow cosx\left(2cos2x-1\right)-3cosx=0\)
\(\Leftrightarrow cosx\left(2cos2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
c/
\(\Leftrightarrow2sin2x.cos2x=0\)
\(\Leftrightarrow sin4x=0\)
\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)