Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow\frac{sinx}{cosx}+\frac{sin2x}{cos2x}=sin3x.cosx\)
\(\Leftrightarrow\frac{sinx.cos2x+cosx.sin2x}{cosx.cos2x}=sin3x.cosx\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}=sin3x.cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\Rightarrow x=\frac{k\pi}{3}\\\frac{1}{cosx.cos2x}=cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x.cos2x=1\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)cos2x=1\)
\(\Leftrightarrow cos^22x+cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=k\pi\)
c/
\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)
\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)
\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)
a/
ĐKXĐ: ...
\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)
\(\Leftrightarrow2tanx=-2\sqrt{3}\)
\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
b/
\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)
\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)
\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)
d/
ĐKXĐ: ...
\(\Leftrightarrow tanx-1+cos2x=0\)
\(\Leftrightarrow\frac{sinx}{cosx}-1-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow\frac{sinx-cosx}{cosx}-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{cosx}-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\\frac{1}{cosx}-sinx-cosx=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Rightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow1-sinx.cosx-cos^2x=0\)
\(\Leftrightarrow sin^2x-sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow sinx=0\Rightarrow x=k\pi\)
c/
\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)
\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)
c/
\(a+b+c=1+\sqrt{3}-1-\sqrt{3}=0\)
\(\Rightarrow\) Pt có 2 nghiệm: \(\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow cot^22x+3.cot2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cot2x=-1\\cot2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k\pi\\2x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{1}{2}arccot\left(-2\right)+\frac{k\pi}{2}\end{matrix}\right.\)
a/
\(\Leftrightarrow2cos^2x-1+cosx+1=0\)
\(\Leftrightarrow cosx\left(2cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\Leftrightarrow tanx+\frac{1}{tanx}=2\)
\(\Leftrightarrow tan^2x+1=2tanx\)
\(\Leftrightarrow tan^2x-2tanx+1=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
c/
ĐKXĐ: ...
\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)
\(\Leftrightarrow5tan2x=-5\)
\(\Rightarrow tan2x=-1\)
\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
d/
ĐKXĐ: ...
\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)
\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)
\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)
a/
\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)
\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)
\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)
b/
\(tan\left(2x-15^0\right)=tanx\)
\(\Rightarrow2x-15^0=x+k180^0\)
\(\Rightarrow x=15^0+k180^0\)
\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)
d/
ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)
Xét (2)
\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)
\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)
\(tan2x=tanx\)
\(\Rightarrow2x=x+k\pi\)
\(\Rightarrow x=k\pi\)