Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
\(\left\{{}\begin{matrix}x^2-xy-2y^2=0\\3x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x\left(1-3x\right)-2\left(1-3x\right)^2=0\\y=1-3x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-14x^2+11x-2=0\\y=1-3x\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{7}\end{matrix}\right.\\y=1-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=\dfrac{1}{7}\end{matrix}\right.\end{matrix}\right.\)
Vậy...
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
- Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:
\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
- Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:
\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
1: =>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
2: =>2x-3y=1 và 3x=4y+2
=>2x-3y=1 và 3x-4y=2
=>x=2 và y=1
Ta có:
\(x^3+3x=y^3+3y\)
\(\Leftrightarrow\left(x^3-y^2\right)+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3\right)=0\)
\(x^2+xy+y^2+3=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+3>0\)
\(\Leftrightarrow x-y=0\)
\(\Leftrightarrow x=y\)
\(\left(2\right)\Leftrightarrow2x^2=20\)
\(\Leftrightarrow x^2=10\)
\(\Leftrightarrow x=y=\pm\sqrt{10}\)
Vậy ............
\(x^4-10x^2+9=0\)
\(\Leftrightarrow x^4-x^2-9x^2+9x=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2\right)\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+x^2-9\right)\left(x-1\right)=0\)
<=> x - 1 = 0 (vì x3 + x2 - 9)
<=> x = 1
Giải phương trình nghiệm nguyên hay như nào em?