Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
ĐKXĐ: \(2059-x\ge0\)
PT đã cho tương đương với:
\(\sqrt{2059-x}+\sqrt{2059-x+2994}+\sqrt{2059-x+95}=24\)(*)
Mà VT của pt(*)\(\ge0+\sqrt{2994}+\sqrt{95}>24=VP\) nên pt(*) vô nghiệm
Vậy pt đã cho vô nghiệm
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)
Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :
\(\sqrt{x+t}+\sqrt{x-t}=4\)
\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)
\(< =>2x+2\sqrt{x^2-x-11}=4\)
\(< =>x+\sqrt{x^2-x-11}=4\)
\(< =>x^2-x-11=\left(4-x\right)^2\)
\(< =>x^2-x-11=16-8x+x^2\)
\(< =>x^2-x-11-16+8x-x^2=0\)
\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
Chỗ \(2x+2\sqrt{x^2-x-11}\)=4
suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn
tới đó thì mình làm được rồi cảm ơn bạn
đề sai hay vô nghiệm nhỉ
pt lớn thế này vô nghiệm hơi phí chắc sai đề
Đề sai. Sửa đề \(\sqrt{2059-x}+\sqrt{2035-x}+\sqrt{2154-x}=24\) (1)
Điều kiện: \(x\le2035\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{2059-x}-7\right)+\left(\sqrt{2035-x}-5\right)+\left(\sqrt{2154-x}-12\right)=0\)
\(\Leftrightarrow\frac{2010-x}{\sqrt{2059-x}+7}+\frac{2010-x}{\sqrt{2035-x}+5}+\frac{2010-x}{\sqrt{2154-x}+12}=0\)
\(\Leftrightarrow\left(2010-x\right)\left(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\right)=0\)
Ta thấy biếu thức \(\frac{1}{\sqrt{2059-x}+7}+\frac{1}{\sqrt{2035-x}+5}+\frac{1}{\sqrt{2154-x}+12}\)luôn dương nên \(2010-x=0\Leftrightarrow x=2010\)(TM)
Vậy ...