K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

\(ĐKXĐ:x\le2\)

\(x^2=\sqrt{2-x}+2\)

\(x^2-2=\sqrt{2-x}\)

\(x^4-4x^2+4=2-x\)

\(x^4-4x^2+x+2=0\)

\(x^4+x^3-3x^2-2x-1x^3-x^2+3x+2=0\)

\(x\left(x^3+x^2-3x-2\right)-\left(x^3+x^2-3x-2\right)=0\)

\(\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\left(x-1\right)\left(x^3+2x^2-x^2-2x-x-2\right)=0\)

\(\left(x-1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)

\(TH1:x-1=0< =>x=1\left(KTM\right)\)

mình cũng chưa biết tại sao nó lại không thỏa mãn nữa :v

\(TH2:x+2=0< =>x=-2\left(TM\right)\)

xét \(x^2-x-1=0\)

\(\sqrt{\Delta}=\sqrt{\left(-1\right)^2-4.1.\left(-1\right)}=\sqrt{5}\)

\(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(TM\right)\\x_2=\frac{1-\sqrt{5}}{2}\left(KTM\right)\end{cases}}\)

vậy kl...................

24 tháng 8 2021

dốt quá bạn thêm đkxđ vào lúc bình cả hai vế lên nha

\(\orbr{\begin{cases}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=1\left(KTM\right)\\x=\frac{1-\sqrt{5}}{2}\left(KTM\right)\end{cases}}\)

2 tháng 9 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

II. Cách nhận biết câu trả lời đúng

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

18 tháng 8 2017

Mình đang cần gấp mọi người giải luôn giúp mình nhé. Thanks

30 tháng 7 2019

\(Dk:x,y\ge\frac{-5}{4}\)

\(\left\{{}\begin{matrix}\left(2x-3\right)^2=4y+5\\\left(2y-3\right)^2=4x+5\end{matrix}\right.\Rightarrow\left(2y-3\right)^2-\left(2x-3\right)^2=4x-4y\Leftrightarrow\left(2y-2x\right)\left(2x+2y-6\right)=4\left(x-y\right)\Leftrightarrow4\left(y-x\right)\left(x+y-3\right)=4\left(x-y\right)\Leftrightarrow-4\left(x-y\right)\left(x+y-3\right)=4\left(x-y\right)\)

\(+,x=y\Rightarrow\left(2x-3\right)^2=4x+5\Leftrightarrow4x^2-12x+9=4x+5\Leftrightarrow4x^2-16x+4=0\Leftrightarrow x^2-4x+1=0\)

\(\Delta=16-4=12>0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y=2+\sqrt{3}\left(tm\right)\\x=y=2-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

\(+,x\ne y\Rightarrow-4\left(x+y-3\right)=4\Leftrightarrow x+y-3=-1\Leftrightarrow x+y=2\)

\(\Leftrightarrow x=2-y\Rightarrow\left(1-2y\right)^2=4y+5\Leftrightarrow1-4y+4y^2=4y+5\Leftrightarrow4y^2-8y-4=0\Leftrightarrow y^2-2y-1=0;\Delta=\left(-2\right)^2-\left(-1\right).1.4=4-\left(-4\right)=8>0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1-\sqrt{2};x=1+\sqrt{2}\left(tm\right)\\x=1-\sqrt{2};y=1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

6 tháng 7 2016

\(x^3-2x^2-2x+3=0\)

\(\Leftrightarrow x^3-x^2-x^2+x-3x+3=0\)

\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(x-1\right)=0\)

...

24 tháng 3 2020

Đk: x>=-3

\(pt\Leftrightarrow4\left(x+3\right)=81x^4-18x^3-71x^2+8x+16-4x-12\)

\(\Leftrightarrow81x^4-18x^3-71x^2+4x+4=0\)

\(\Leftrightarrow81x^3\left(x-1\right)+63x^2\left(x-1\right)-8x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(81x^3+63x^2-8x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(81x^3+18x^2+45x^2+10x-18x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[9x^2\left(9x+2\right)+5x\left(9x+2\right)-2\left(9x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(9x+2\right)\left(9x^2+5x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(9x+2\right)\left[9\left(x+\frac{5}{18}\right)^2-\frac{97}{36}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{9}\\x=\frac{-5+\sqrt{97}}{18}\\x=\frac{-5-\sqrt{97}}{18}\end{matrix}\right.\)(tmđk)

25 tháng 3 2020

Thay vì cách làm dài bình phương 2 vế, ta có cách ngắn hơn như sau: ĐK: \(x\ge-3;9x^2-x-4\ge0\)

Phương trình tương đương:

\(9x^2=x+3+2\sqrt{x+3}+1=\left(\sqrt{x+3}+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\sqrt{x+3}+1\\3x=-\left(\sqrt{x+3}+1\right)\end{matrix}\right.\). Đặt \(\sqrt{x+3}=a\ge0\)

\(\Rightarrow\left[{}\begin{matrix}3a^2-a-10=0\\3a^2+a-8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{-5}{3}\\a=...\\a=...\end{matrix}\right.\)

Từ đó suy ra x

10 tháng 7 2017

\(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

11 tháng 7 2017

a, Giải phương trình \(x^2-x-2=0\)

\(=''-1''^2-4\times1\times''-2''=1+8\) lớn hơn \(0\)

\(\sqrt{\Delta}=\sqrt{9}=3\)

\(\Rightarrow x_1=-1;x_2=2\)

b, Vẽ đồ thị bảng số 

- Hàm số \(y=x^2\) 

- Hàm số \(y=x+2\)

+ Cho \(x=0\Rightarrow2\) được điểm A '' 0,2 ''

+ Cho \(x=2\Rightarrow y=0\) được điềm '' -2 ; 0 '' 

Đồi thị hàm số

11 tháng 11 2017

Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1

★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0

Không mất tính tổng quát giả sử  x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2

★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0

Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2

Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2 

11 tháng 11 2017

Em còn cách khác. Anh xem có đúng ko?

Điều kiện: \(x,y,z\ge-1\)

Xét các trường hợp, dùng phương pháp đánh giá, CM được:

 \(x=y=z\)

Thế vào tìm được nghiệm:

\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)