Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
\(tan\cdot\left(x+\dfrac{\pi}{4}\right)+cot\cdot\left(2x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=-cot\cdot\left(2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=cot\cdot\left(-2x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{2}+2x-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{6}+2x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+2x+k\pi\)
\(\Leftrightarrow-x=\dfrac{-\pi}{12}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}-k\pi\left(k\in Z\right)\)
a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)
\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)
\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)
hay k=-7/10(vô lý)
b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)
c.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)
\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)
\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)
d.
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
a.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)
\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
b.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)
\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)
b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)
Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên
\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)
\(\Leftrightarrow x-15^0=30^0+k180^0\)
\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)
Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)
\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)
\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)
\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)
\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)
Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:
a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.
b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.
c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.
d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.
a: tan x=-1
=>tan x=tan(-pi/4)
=>x=-pi/4+kpi
b: tan(x+20 độ)=tan 60 độ
=>x+20 độ=60 độ+k*180 độ
=>x=40 độ+k*180 độ
c: tan 3x=tan(x-pi/6)
=>3x=x-pi/6+kpi
=>2x=-pi/6+kpi
=>x=-pi/12+kpi/2
d: tan(5x+pi/4)=0
=>5x+pi/4=kpi
=>5x=-pi/4+kpi
=>x=-pi/20+kpi/5
e: cot(2x-pi/4)=0
=>2x-pi/4=pi/2+kpi
=>2x=3/4pi+kpi
=>x=3/8pi+kpi/2