K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

Để giải các phương trình này, chúng ta cần sử dụng các quy tắc và công thức của hàm tan và hàm cot. Hãy xem cách giải từng phương trình một:

a) Để giải phương trình tan(x) = -1, ta biết rằng giá trị của hàm tan là -1 tại các góc -π/4 và 3π/4. Vì vậy, x có thể là -π/4 + kπ hoặc 3π/4 + kπ, với k là số nguyên.

b) Để giải phương trình tan(x+20°) = tan(60°), ta có thể sử dụng quy tắc tan(A+B) = (tanA + tanB) / (1 - tanAtanB). Áp dụng công thức này, ta có: (tanx + tan20°) / (1 - tanxtan20°) = tan60°. Giải phương trình này, ta sẽ tìm được giá trị của x.

c) Để giải phương trình tan(3x) = tan(x-π/6), ta có thể sử dụng quy tắc tan(A-B) = (tanA - tanB) / (1 + tanAtanB). Áp dụng công thức này, ta có: (tan3x - tan(π/6)) / (1 + tan3xtan(π/6)) = 0. Giải phương trình này, ta sẽ tìm được giá trị của x.

d) Để giải phương trình tan(5x+π/4) = 0, ta biết rằng giá trị của hàm tan là 0 tại các góc π/2 + kπ, với k là số nguyên. Vì vậy, 5x+π/4 = π/2 + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

e) Để giải phương trình cot(2x-π/4) = 0, ta biết rằng giá trị của hàm cot là 0 tại các góc π + kπ, với k là số nguyên. Vì vậy, 2x-π/4 = π + kπ. Giải phương trình này, ta sẽ tìm được giá trị của x.

a: tan x=-1

=>tan x=tan(-pi/4)

=>x=-pi/4+kpi

b: tan(x+20 độ)=tan 60 độ

=>x+20 độ=60 độ+k*180 độ

=>x=40 độ+k*180 độ

c: tan 3x=tan(x-pi/6)

=>3x=x-pi/6+kpi

=>2x=-pi/6+kpi

=>x=-pi/12+kpi/2

d: tan(5x+pi/4)=0

=>5x+pi/4=kpi

=>5x=-pi/4+kpi

=>x=-pi/20+kpi/5

e: cot(2x-pi/4)=0

=>2x-pi/4=pi/2+kpi

=>2x=3/4pi+kpi

=>x=3/8pi+kpi/2

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

5 tháng 8 2017

\(tan\cdot\left(x+\dfrac{\pi}{4}\right)+cot\cdot\left(2x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=-cot\cdot\left(2x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=cot\cdot\left(-2x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{2}+2x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{6}+2x\right)\)

\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+2x+k\pi\)

\(\Leftrightarrow-x=\dfrac{-\pi}{12}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{12}-k\pi\left(k\in Z\right)\)

a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)

\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)

\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)

hay k=-7/10(vô lý)

b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)

NV
16 tháng 9 2020

c.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(2x-\frac{3\pi}{4}\right)=cot\left(\frac{2\pi}{3}-x\right)\)

\(\Leftrightarrow2x-\frac{3\pi}{4}=\frac{2\pi}{3}-x+k\pi\)

\(\Leftrightarrow x=\frac{17\pi}{36}+\frac{k\pi}{3}\)

d.

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{3\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=\frac{3\pi}{4}-x+k2\pi\\2x+\frac{\pi}{3}=x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(3x-\frac{\pi}{3}\right)=tan\left(-x\right)\)

\(\Leftrightarrow3x-\frac{\pi}{3}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(x-\frac{\pi}{4}\right)=cot\left(-x\right)\)

\(\Leftrightarrow x-\frac{\pi}{4}=-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

8 tháng 9 2016

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

8 tháng 9 2016

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)