K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Vì \(x=2017\Rightarrow x+1=2018\)

Thay \(x+1=2018\)vào biểu thức A ta được :

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

16 tháng 7 2019

Tại x=2017 thì 2018 = x + 1 

Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

6 tháng 11 2018

Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được

13 tháng 3 2018

a) \(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)

Tự giải pt bậc 2 nhak :))))

15 tháng 1 2018

câu này xài cách đặt ẩn giống câu trên luôn

b) Đặt n = x2-3x+3 ta được

n(n+x)=2x2

n2 +nx-2x2=0

n^2-1nx+2nx-2x^2=0

n(n-x)+2x(n-x)=0

(n+2x)(n-x)=0

(x^2-3x+3+2x)(x^2-3x+3-x)=0

(x^2-x+3)(x^2-4x+3)=0

mà x^2-x+3 =0                                     

 x^2-1/2.2x+1/4-1/4+3=0                     

(x+1/2)^2+11/4 >0( loại)   

Vậy ta còn    

x^2-4x+3=0

 x^2-1x-3x+3=0                 

 (x-1)(x-3)=0

<=> x-1=0 hay x-3=0

       x=1     hay x=3

Vậy S= (1;3)

                 

                                                                

15 tháng 1 2018

a) (x -1)(x-6)(x-5)(x-2)=252

<=>( x^2-7x+6)(x^2-7x+10)=252

Đặt n=x^2-7x+6 ta được :

n(n+4)=252

n^2+4n-252=0

n^2-14n+18n-252=0

n(n-14)+18(n-14)=0

(n+18)(n-14)=0

r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2

16 tháng 3 2016

<=>(x+1)3+x=x3+3x2+4x+1

=>x(x-1)2+5=x3-2x2+x+5

=>x3+3x2+4x+1=x3-2x2+x+5

=>x=\(\pm\frac{\sqrt{89}}{10}-\frac{3}{10}\)

10 tháng 4 2018

\(x^2+y^2+z^2=x\left(y+z\right)\Rightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)

\(\left(x-z\right)^2\ge0\forall x,z\)

\(y^2\ge0\forall y\)

\(z^2\ge0\forall z\)

\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2\ge0\forall x,y,z\)

Dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\x=z\\y=0;z=0\end{cases}}\)

=> x=y=z=0 là nghiệm của pt

28 tháng 4 2019

Em mới lớp 7 thôi nên không chắc

Nhân 2 vào hai vế:

\(PT\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)

Đến đây dễ rồi.

12 tháng 11 2018

\(x^3-5x^2+8x-4.\)

\(=x^3-4x^2-x^2+4x^2+4x^2-4\)

\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)

\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)

\(=\left(x^2-4x+4\right)\left(x-1\right)\)

\(=\left(x-2\right)^2\left(x-1\right)\)

12 tháng 11 2018

Cảm ơn bạn nhiều 

Bạn có thể giúp mình phần còn lại đc hem ? ^.^