Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) <=> \(x^3-3x^2+3x-1+3x^2+6x+8-x^3=17\)
<=>9x=10
<=> x=\(\frac{10}{9}\)
+) \(x\left(x^2-25\right)-x^3-8=3\)<=> \(x^3-x^3-25x=3+8\)
<=> x=\(-\frac{11}{25}\)
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) x^4 - 3x^3 + 3x - 1 = 0
<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0
<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0
<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
a: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-x^2+2x+\left(x-1\right)^2\)
\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)
\(\Leftrightarrow5x^2-20x-41=5x^2-6x+27\)
=>-14x=68
hay x=-34/7
b: \(\Leftrightarrow x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=\left(x+3\right)^3-x^3-9x^2\)
\(\Leftrightarrow-12x-16=x^3+9x^2+27x+27-x^3-9x^2=27x+27\)
=>-39x=43
hay x=-43/39
câu này xài cách đặt ẩn giống câu trên luôn
b) Đặt n = x2-3x+3 ta được
n(n+x)=2x2
n2 +nx-2x2=0
n^2-1nx+2nx-2x^2=0
n(n-x)+2x(n-x)=0
(n+2x)(n-x)=0
(x^2-3x+3+2x)(x^2-3x+3-x)=0
(x^2-x+3)(x^2-4x+3)=0
mà x^2-x+3 =0
x^2-1/2.2x+1/4-1/4+3=0
(x+1/2)^2+11/4 >0( loại)
Vậy ta còn
x^2-4x+3=0
x^2-1x-3x+3=0
(x-1)(x-3)=0
<=> x-1=0 hay x-3=0
x=1 hay x=3
Vậy S= (1;3)
a) (x -1)(x-6)(x-5)(x-2)=252
<=>( x^2-7x+6)(x^2-7x+10)=252
Đặt n=x^2-7x+6 ta được :
n(n+4)=252
n^2+4n-252=0
n^2-14n+18n-252=0
n(n-14)+18(n-14)=0
(n+18)(n-14)=0
r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2