Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
Đặt \(\hept{\begin{cases}2x^2+x-2013=m\\x^2-5x-2012=n\end{cases}}\)nên ta có phương trình:
\(m^2+4n^2=4nm\)
\(\Leftrightarrow m^2-2.m.2n+\left(2n\right)^2=0\)
\(\Leftrightarrow\left(m-2n\right)^2=0\)
Tự làm nốt...
Bạn học trường nào thế?
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
Dat \(\hept{\begin{cases}a=2x^2+x-2013\\b=x^2-5x-2012\end{cases}}\)ta co phuong trinh
(2x2+x-2013)2+4 (x2-5x-2012)2= 4 (2x2+x-2013)(x2-5x-2012)
<=>\(a^2+4b^2=4ab\)
<=>\(a^2+4b^2-4ab=0\)
<=>\(\left(a-2b\right)^2=0\)
<=>\(a=2b\)
=>\(2x^2+x-2013=2x^2-10x-4024\)
<=>\(11x=2011\)
<=>x=\(\frac{2011}{11}\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right).\)
\(\Rightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+4\left(x^2-5x-2012\right)^2=0\)
\(\Leftrightarrow\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)(Hằng đẳng thức)
\(\Leftrightarrow2x^2+x-2013-2x^2+10x+4024=0\)
\(\Leftrightarrow11x=-2011\)
\(\Leftrightarrow x=\frac{-2011}{11}\)
Đặt \(x-2012=a\Rightarrow x-2014=a-2\)
\(\Rightarrow2x-2026=a+a-2\)
Biểu thức trở thành: \(a^3+\left(a-2\right)^3=\left(a+a-2\right)^3\)
\(\Leftrightarrow a^3+\left(a-2\right)^3=a^3+\left(a-2\right)^3+3a\left(a-2\right)\left(a+a-2\right)\)
\(\Leftrightarrow6a\left(a-2\right)\left(a-1\right)=0\)
Đến đây tự làm tiếp nha