K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

\(\left(x^2+5x^2\right)-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow4x^2-10x-24=0\)

\(\Leftrightarrow\frac{-\left(-10\right)+\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)

\(\Leftrightarrow\frac{10+\sqrt{484}}{2.4}\)

\(\Leftrightarrow\frac{10+\sqrt{484}}{8}\)

\(\Leftrightarrow\frac{-\left(-10\right)-\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)

\(\Leftrightarrow\frac{10-\sqrt{\left(10\right)^2+4.4.24}}{2.4}\)

\(\Leftrightarrow\frac{10-\sqrt{484}}{8}\)

\(\Rightarrow\hept{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)

Sai đâu sửa hộ :)

28 tháng 2 2020

a) \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)

\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)

\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)

\(\Leftrightarrow x^4+10x^2+25x^2-2x^2-10x=24\)

\(\Leftrightarrow x^4+10x^3+23x^2-10x=24\)

\(\Leftrightarrow x^4+10x^3+23x^2-10x-24=0\)

\(\Leftrightarrow\left(x^3+11x^2+34x+24\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+10x+24\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+6\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x+4=0\text{ hoặc }x+6=0\text{ hoặc }x-1=0\text{ hoặc }x+1=0\)

\(\Leftrightarrow x=-4\text{ hoặc }x=-6\text{ hoặc }x=\pm1\)

Vậy: nghiệm của phương trình là: x = -4; -6; +-1

b) \(\left(x^3+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow x^5+x^4+2x^3+x^3+x^2+2x+x^2+x+2=12\)

\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2=12\)

\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2-12=0\)

\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x-10=0\)

\(\Leftrightarrow\left(x^4+2x^3+5x^2+7x+10\right)\left(x-1\right)=0\)

vì: \(x^4+2x^3+5x^2+7x+10\ne0\) nên:

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy: nghiệm của phương trình là: x = 1

22 tháng 3 2015

Đây là phương trình đối xứng 

chia 2 vế cho x^2 khác không và không là nghiệm phương trình rồi giải ra

3 tháng 7 2016

a, 2(x+5)=x2+5x

=> 2x+10=x2+5x

=> 0=x2+5x-2x-10

=> x2+3x-10=0

=> x2+5x-2x-10=0

=> x(x+5)-2(x+5)=0

=> (x-2)(x+5)=0

=> x-2 =0 hoặc x+5 =0

=> x=2 hoặc x=-5

b, 4x2-25=(2x-5)(2x+7)

=> (2x)2-52=(2x-5)(2x+7)

=> (2x-5)(2x+5) - (2x-5)(2x+7)=0

=> (2x-5)(2x+5-2x-7)=0

=> (2x-5)(-2)=0

=> 2x-5=0

=> 2x=5

=> x =2,5

c, x3+x=0

=>x(x2+1)=0

=> x=0 hoặc x2+1=0

Mà x2+1 >= 1 nên x=0

d, Hình như là thiếu đề

3 tháng 7 2016

a,=2x+10=x2+5x

   =-x2-2x-5x+10=0

   =-x2-7x+10=0

   Delta=(-7)2-4.-1.10=89

x1=7+căn89/2      x2=7-căn 89/2

CÁC CÂU KHÁC TỰ GIẢI NHA bạn

2 tháng 2 2017

1, (x2-x+2)2-(x-2)2=(x2-x+2-x+2)(x2-x+2+x-2)=(x2-2x+4)x2

2,a.x3+4x2-29x+24=0

\(\Leftrightarrow\)x3-3x2+7x2-21x-8x+24=0

\(\Leftrightarrow\)(x3-3x2)+(7x2-21x)-(8x+24)=0

\(\Leftrightarrow\)x2(x-3)+7x(x-3)-8(x-3)=0

\(\Leftrightarrow\)(x-3)(x2-x+8x-8)=0

\(\Leftrightarrow\)(x-3)(x-1)(x+8)=0

\(\Leftrightarrow\)\(\left[\begin{matrix}x-3=0\\x-1=0\\x+8=0\end{matrix}\right.\)\(\left[\begin{matrix}x=3\\x=1\\x=-8\end{matrix}\right.\)

vậy pt có tập nghiệm là S=\(\left\{-8;1;3\right\}\)

b. đặt x2-x=y ta có:

y2-14y+24=0 \(\Leftrightarrow\)(y2-2.7y+49)-25=0 \(\Leftrightarrow\)(y-7)2-52=0 \(\Leftrightarrow\)(y-12)(y-2)=0 \(\Leftrightarrow\left[\begin{matrix}y=12\\y=2\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}x^2-x=12\\x^2-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x^2-x-12=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}\left(x+3\right)\left(x-4\right)=0\\\left(x-2\right)\left(x+1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-3\\x=4\\x=2\\x=-1\end{matrix}\right.\)

vậy pt có tập nghiệm là S=\(\left\{-3;-1;2;4\right\}\)

3 tháng 2 2017

3.ta có : 5x2+5y2+8xy+2x-2y+2=0

\(\Leftrightarrow\)(4x2+8xy+4y2)+(x2+2x+1)+(y2-2y+1)=0

\(\Leftrightarrow\)(2x+2y)2+(x+1)2+(y-1)2=0

lại có (2x+2y)2+(x+1)2+(y-1)2\(\ge\)0 dấu = chỉ sảy ra khi và chỉ khi \(\left\{\begin{matrix}\left(2x+2y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}2x+2y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

vậy x=-1 và y=1

3 tháng 1 2018

câu a bạn sai đề nha

b)

\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)

\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)

\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)

\(x^4-x^3+1-x=0\)

\(x^3\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^3-1\right)=0\)

\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

4 tháng 1 2018

Bước thứ 2 là sao ko hỉu?

5 tháng 7 2016

1.

Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)

Thay vào pt:

\(\Rightarrow a^2+10a+24=0\)

\(\Leftrightarrow a^2+6a+4a+24=0\)

\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)

\(\Rightarrow x=3,x=2,x=4,x=1\)

T I C K mình sẽ giải típ cho cảm ơn

5 tháng 7 2016

típ nha

11 tháng 8 2018

Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt \(x^2+5x=a\) . Phương trình trở thành :

\(a^2-2a-24=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)

Với \(a=-4\)

\(\Leftrightarrow x^2+5x=-4\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Với \(a=6\)

\(\Leftrightarrow x^2+5x=6\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-1;2;-3;-4\right\}\)

11 tháng 8 2018

1) x4 - 5x2 + 4 = 0

⇔ x4 - x2 - 4x2 + 4 = 0

⇔ x2(x2 - 1) - 4(x2 - 1) = 0

⇔ (x2 - 1)(x2 - 4) = 0

\(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)

Vậy \(x=\pm1\)\(x=\pm2\)

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

30 tháng 5 2017

1) ĐK: \(x\ge-1\)

TH1: \(x^2-3x+1=-x-1\)

\(\Leftrightarrow x^2-2x+2=0\Leftrightarrow\left(x-1\right)^2+1=0\) vô lý

TH2: \(x^2-3x+1=x+1\)

\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy ...

30 tháng 5 2017

1) \(\left|x^2-3x+1\right|=x+1\)(1)

khi \(x\ge-1\), phương trình (1) có dạng:

\(\orbr{\begin{cases}x^2-3x+1=x+1\\x^2-3x+1=-x-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-4x=0\\x^2-2x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x\left(x-4\right)=0\\\left(x-1\right)^2+1=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=4\end{cases}}\\\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì \(\left(x-1\right)^2+1>0\)(vô nghiệm) )

vậy tập nghiệm của phương trình là: S={0;4}