Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bạn sai đề nha
b)
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)
\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)
\(x^4-x^3+1-x=0\)
\(x^3\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^3-1\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
1.
Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào pt:
\(\Rightarrow a^2+10a+24=0\)
\(\Leftrightarrow a^2+6a+4a+24=0\)
\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)
\(\Rightarrow x=3,x=2,x=4,x=1\)
T I C K mình sẽ giải típ cho cảm ơn
a, (x2+5x)2 - 2(x2+5x)=24
=>(x2+5x)2-2(x2+5x)-24=0
=>t2-2t-24=0
=>t=6
t=-4
=>x2+5x=6
x2+5x=-4
=>x=1
x=-6
x=-1
x=-4
b, (x2-x-2).(x2+x-3)=12
c,(x+2)(x+3)(x-5)(x-6)-180=0
=>x2+3x+2x+6).(x-5).(x-6)-180=0
=>(x2+5x+6).(x-5).(x-6)-180=0
=>(x3-19x-30).(x-6)-180=0
=>x4-6x3-19x2+114x-30x+180=0
=>x4-6x3-19x2+84x=0
=>x(x3-6x2-19x+84)=0
=>x(x3-3x2-3x2+9x-28x+84)=0
=>x(x2(x-3)-3x(x-3)-28(x-3))=0
=>x(x-3).(x2-3x-28)=0
=>x(x-3).(x2+4x-7x-28)=0
=>x(x-3)(x.(x+4)-7(x+4))=0
=>x(x-3)(x=4)(x-7)=0
=>x=0
x-3=0
x+4=0
x-7=0
=>x=0
x=3
x=-4
x=7
a: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)\)
b: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3 hoặc x=2
Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
a) \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^4+10x^2+25x^2-2x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x-24=0\)
\(\Leftrightarrow\left(x^3+11x^2+34x+24\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+10x+24\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+6\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x+4=0\text{ hoặc }x+6=0\text{ hoặc }x-1=0\text{ hoặc }x+1=0\)
\(\Leftrightarrow x=-4\text{ hoặc }x=-6\text{ hoặc }x=\pm1\)
Vậy: nghiệm của phương trình là: x = -4; -6; +-1
b) \(\left(x^3+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow x^5+x^4+2x^3+x^3+x^2+2x+x^2+x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2-12=0\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x-10=0\)
\(\Leftrightarrow\left(x^4+2x^3+5x^2+7x+10\right)\left(x-1\right)=0\)
vì: \(x^4+2x^3+5x^2+7x+10\ne0\) nên:
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy: nghiệm của phương trình là: x = 1