K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2021

ĐKXĐ: \(x\ge-\dfrac{4}{5}\)

Đặt \(\sqrt{5x+4}=t\ge0\Rightarrow x=\dfrac{t^2-4}{5}\)

Pt trở thành:

\(\dfrac{t^2-4}{5}-t=2\)

\(\Leftrightarrow t^2-5t-14=0\Rightarrow\left[{}\begin{matrix}t=7\\t=-2< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{5x+4}=7\)

\(\Rightarrow5x+4=49\)

\(\Rightarrow x=9\)

25 tháng 11 2023

ĐKXĐ: \(x\in R\)

\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)

=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)

=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)

=>x-2=0

=>x=2(nhận)

25 tháng 11 2023

\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)

\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.

8 tháng 5 2017

\(Pt\Leftrightarrow\sqrt[5]{27}x^{10}+2\sqrt[5]{27}=5x^6\)

Áp dụng bất đẳng thức AM-GM cho 5 số dương: 

\(VT=\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\sqrt[5]{27}+\sqrt[5]{27}\ge5\sqrt[5]{\frac{27x^{30}}{27}}=5x^6=VF\)

Dấu = xảy ra khi \(\frac{\sqrt[5]{27}x^{10}}{3}=\sqrt[5]{27}\Leftrightarrow x^{10}=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt[10]{3}\\x=-\sqrt[10]{3}\end{cases}}\)

7 tháng 5 2017

mk có cách lm = mt chứ tính= tay thì chịu

10 tháng 9 2016

e mới vào lớp 6 chị ơi

10 tháng 9 2016

a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0

<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0

<=> x = 3

10 tháng 5 2017

Đặt \(\sqrt{x+1}=a,\sqrt{x^2-x+1}=b\left(a\ge0,b\ge\dfrac{1}{2}\right)\)

\(Pt\Leftrightarrow2a^2+2b^2-5ab=0\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

10 tháng 5 2017

đây nà bạn

Căn bậc hai. Căn bậc ba

11 tháng 6 2019

#)Thắc mắc ?

Bạn ơi ! chỗ kia là \(\sqrt{x}-7hay\sqrt{x+7}\)thế ???????????????

11 tháng 6 2019

#)Giải :

\(5\sqrt{x-1}-\sqrt{x-7}=3x-4\)

ĐKXĐ : \(x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\ge0\\\sqrt{x+7=b>0}\end{cases}\Rightarrow3x-4}=\frac{25a^2-b^2}{8}\)

Phương trình trở thành : 

\(5a-b=\frac{25a^2-b^2}{8}\Leftrightarrow\left(5a-b\right)\left(5a+b\right)=8\left(5a-b\right)\)

 \(\Leftrightarrow\orbr{\begin{cases}5a-b=0\\5a+b=8\end{cases}\Leftrightarrow\orbr{\begin{cases}5\sqrt{x-1}=\sqrt{x+7}\\5\sqrt{x-1}+\sqrt{x+7}=8\end{cases}}}\)

\(TH1:5\sqrt{x+1}=\sqrt{x+7}\Leftrightarrow25\left(x-1\right)=x+7\Rightarrow x=\frac{4}{3}\)

\(TH2:5\sqrt{x-1}+\sqrt{x+7}=8\)

\(\Leftrightarrow5\sqrt{x-1}-5+\sqrt{x+7}-3=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x-7}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x-7}+3}\right)=0\)

\(\Rightarrow x=2\)

30 tháng 11 2016

\(\sqrt{7-x^2}=2=>7-x^2=4=>x^2=3=>x=\sqrt{3}\)

30 tháng 11 2016

\(+-\sqrt{3}\) MÀ BẠN

31 tháng 8 2016

bài này dùng bdt nhé bạn

ta có \(\sqrt{\left(y-1\right)\cdot1}\le\frac{y-1+1}{2}=\frac{y}{2}\) ( bdt cô-si)

==> \(x\sqrt{y-1}\le\frac{xy}{2}\)

tương tự \(2y\sqrt{x-1}\le xy\)

do đó \(x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3}{2}xy\)

dấu ''='' xảy ra khi x=y=2

Đk :\(x\ge1;y\ge1\)

đề bài <=> \(\frac{xy}{2}-x\sqrt{y-1}+xy+2y\sqrt{x-1}=0\) 

          <=> \(\frac{x}{2}\left(y-2\sqrt{y-1}\right)+y\left(x-2\sqrt{x-1}\right)=0\)

          <=> \(\frac{x}{2}\left[\left(y-1\right)-2\sqrt{y-1}+1\right]+y\left[\left(x-1\right)-2\sqrt{x-1}+1\right]=0\)

          <=>\(\frac{x}{2}\left(\sqrt{y-1}-1\right)^2+y\left(\sqrt{x-1}-1\right)^2=0\)*

vì theo đk ta sẽ có để pt xảy ra thì :

          \(\left(\sqrt{y-1}-1\right)^2=0\)và  \(\left(\sqrt{x-1}-1\right)^2=0\)<=> x=2 và y=2

Mình giải nv đó, bạn xem và trình bày lại dùm mình nhé