K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

#)Thắc mắc ?

Bạn ơi ! chỗ kia là \(\sqrt{x}-7hay\sqrt{x+7}\)thế ???????????????

11 tháng 6 2019

#)Giải :

\(5\sqrt{x-1}-\sqrt{x-7}=3x-4\)

ĐKXĐ : \(x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\ge0\\\sqrt{x+7=b>0}\end{cases}\Rightarrow3x-4}=\frac{25a^2-b^2}{8}\)

Phương trình trở thành : 

\(5a-b=\frac{25a^2-b^2}{8}\Leftrightarrow\left(5a-b\right)\left(5a+b\right)=8\left(5a-b\right)\)

 \(\Leftrightarrow\orbr{\begin{cases}5a-b=0\\5a+b=8\end{cases}\Leftrightarrow\orbr{\begin{cases}5\sqrt{x-1}=\sqrt{x+7}\\5\sqrt{x-1}+\sqrt{x+7}=8\end{cases}}}\)

\(TH1:5\sqrt{x+1}=\sqrt{x+7}\Leftrightarrow25\left(x-1\right)=x+7\Rightarrow x=\frac{4}{3}\)

\(TH2:5\sqrt{x-1}+\sqrt{x+7}=8\)

\(\Leftrightarrow5\sqrt{x-1}-5+\sqrt{x+7}-3=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x-7}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x-7}+3}\right)=0\)

\(\Rightarrow x=2\)

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

31 tháng 5 2019

a,\(1+\sqrt{3x+1}=3x\)(ĐK:\(x>-\frac{1}{3}\))

\(\Leftrightarrow\sqrt{3x+1}=3x-1\)

\(\Leftrightarrow3x+1=9x^2-6x+1\)

\(\Leftrightarrow9x^2-9x=0\)

\(\Leftrightarrow9x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(tm\right)\end{cases}}\)

b,\(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)(ĐK:\(x>-\frac{5}{3}\))

\(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow2+3x-5+2.2\sqrt{3x-5}=x+1\)

\(\Leftrightarrow3x-3-x-1=4\sqrt{3x-5}\)

\(\Leftrightarrow2x-4=4\sqrt{3x-5}\)

\(\Leftrightarrow4x^2-16x+16=48x-80\)

\(\Leftrightarrow4x^2-64x-64=0\)

\(\Delta=64^2-4.\left(-64\right)=4352\)

\(\orbr{\begin{cases}x_1=\frac{64-\sqrt{4352}}{8}=8-2\sqrt{17}\left(tm\right)\\x_2=\frac{64+\sqrt{4352}}{8}=8+2\sqrt{17}\left(tm\right)\end{cases}}\)

c,Cho biểu thức trong căn nhận giá trị 16 mà giải

31 tháng 5 2019

CẢm ơn bạn nhé !

10 tháng 9 2016

e mới vào lớp 6 chị ơi

10 tháng 9 2016

a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0

<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0

<=> x = 3

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)