Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\left(1\right)\)
ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu "=" xảy ra <=> \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Ta lại có VP=3x2-12x+14=3(x-2)2+2 >=2
Dấu "=" xảy ra khi x=2
Do đó VT=VP <=> x=2 (ttmđk)
Vậy S={2}
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)(ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\))
\(\Leftrightarrow2\sqrt{2x-3}+2\sqrt{5-2x}=6x^2-24x+28\)
\(\Leftrightarrow6x^2-24x+28-2\sqrt{2x-3}-2\sqrt{5-2x}=0\)
\(\Leftrightarrow\left(2x-3-2\sqrt{2x-3}+1\right)+\left(5-2x-2\sqrt{5-2x}+1\right)+6x^2-24x+24=0\)
\(\Leftrightarrow\left(\sqrt{2x-3}-1\right)^2+\left(\sqrt{5-2x}-1\right)^2+6\left(x-2\right)^2=0\)
Do \(\left(\sqrt{2x-3}-1\right)^2\ge0;\left(\sqrt{5-2x}-1\right)^2\ge0;6\left(x-2\right)^2\ge0\forall x\in R\)
Nên \(\hept{\begin{cases}\sqrt{2x-3}-1=0\\\sqrt{5-2x}-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-3=1\\5-2x=1\\x=2\end{cases}}\Leftrightarrow x=2\)(t/m ĐKXĐ)
Vậy pt có nghiệm duy nhất là x=2.
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(t^2-2+\left(3-t\right)x-1-2t=0\)
\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)
Vậy nghiệm pt là \(x=\pm\sqrt{7}\)
2/
\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)
Đặt \(\sqrt{x^2+3}-3x=t\)
\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)
TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)
3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)
\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)
\(\Rightarrow VT\le2\)
\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
4/
ĐKXĐ: \(x\ge\dfrac{-5}{4}\)
\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Ta có:
\(\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{\left(1+1\right)\left(2x-3+5-2x\right)}=2\)
\(3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow\) phương trình có nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}3\left(x-2\right)^2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
TXĐ : \(\left[\dfrac{3}{2};\dfrac{5}{2}\right]\).
Áp dụng BĐT Bunhiacopski :
\(VT^2=\left(\sqrt{2x-3}+\sqrt{5-2x}\right)^2\le\left(1^2+1^2\right)\left(2x-3+5-2x\right)=4\)
\(\Rightarrow VT\le2\)
Xảy ra khi \(\dfrac{\sqrt{2x-3}}{1}=\dfrac{\sqrt{5-2x}}{1}\Rightarrow x=2\)(1)
\(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Xảy ra khi \(x-2=0\Leftrightarrow x=2\)(2)
Từ (1)(2) => Pt có nghiệm x=2