K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

Đặt \(x^{-5}=a\Rightarrow x^{-10}=a^2\)

Ta có phương trình : \(32a^2-31a-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-\frac{1}{32}\end{cases}}\Rightarrow\orbr{\begin{cases}x^{-5}=1\\x^{-5}=-\frac{1}{32}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy phương trình có hai nghiệm x = 1 hoặc x = -2.

14 tháng 6 2017

x4-30x2+31x-30=0

 x4+x) -30x2+30x-30=0

x{x3+1} -30{ x2-x+1}=0

x{x+1}{x2-x+1}-30{x2-x+1}=0

{x2-x+1}{x2+x-30}=0

x2+x-30=0 {vi x2-x+1>0}

x2+x-30x-30=0

{x+1}{x-30}=0

  • x=-1
  • x=30
17 tháng 9 2020

\(ĐKXĐ:x\ge-1\)

Ta có : \(\sqrt{x+1}=32x^3+48x^2+18x+1\)

\(\Leftrightarrow\sqrt{x+1}-1=32x^3+48x^2+18x\)

\(\Leftrightarrow\frac{\left(x+1\right)-1^2}{\sqrt{x+1}+1}=2x.\left(16x^2+24x+9\right)\)

\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}-2x\left(4x+3\right)^2=0\)

\(\Leftrightarrow x.\left[\frac{1}{\sqrt{x+1}+1}-2.\left(4x+3\right)^2\right]=0\) (*)

Với mọi \(x\inĐKXD\) thì \(2.\left(4x+3\right)^2>\frac{1}{\sqrt{x+1}+1}\) nên từ (*) suy ra :

\(x=0\) ( Thỏa mãn ĐKXĐ )

Vậy pt có nghiệm duy nhất \(x=0\)

1 tháng 9 2017

\(\Leftrightarrow\frac{3}{2}\sqrt{2x}+5\sqrt{2x}-4\sqrt{2x}+6\sqrt{2x}-\frac{5}{2}\sqrt{2x}=12\Leftrightarrow6\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=2\Leftrightarrow x=2.\)

1 tháng 9 2017

cảm ơn bn nhiều nha

a,

ĐK : \(x\ge\frac{-15}{2}\)

Phương trình đã cho tương đương với

\(\sqrt{2x+15}=32x^2+32x-20\)

\(\Leftrightarrow2x+15=\left(32x^2+32x-20\right)^2\)\(\Leftrightarrow1024x^4+2048x^3-256x^2-1282x+385=0\)

Phương trình này có 2 nghiệm  là \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-11}{8}\end{cases}}\) nên dễ dàng có được

⇔ ( 16x2 + 14x − 11 ) ( 64x2 + 72x − 35 ) = 0

Kết hợp với điều kiên bài toán ta có nghiệm của phương trình là \(x=\frac{1}{2};x=\frac{-9-\sqrt{221}}{16}\)

b,\(x^2=\sqrt{2-x}+2\)

ĐK \(x\le2\)

\(PT\Leftrightarrow\sqrt{2-x}=x^2-2\)

\(\Leftrightarrow2-x=\left(x^2-2\right)^2=x^4-4x^2+4\)

\(\Leftrightarrow x^4-4x^2+x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\)

\(x^2-x-1>0\)nên

\(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}\left(Tm\right)}}\)

Cách kia tiệt trừ ra mất tg == hay như này nhá

\(\left(\sqrt{x+20}-\sqrt{x+11}\right)\left(1+\sqrt{x^2+31x+220}\right)=9\)

\(\Leftrightarrow\sqrt{x+20}-\sqrt{x+11};1+\sqrt{x^2+31x+220}\inƯ\left(9\right)\)

\(\sqrt{x+20}-\sqrt{x+11}\)1-13-39-9
\(1+\sqrt{x^2+31x+220}\)9-93-31-1
x5vô nghiệm -11vô nghiệmvô nghiệmvô nghiệm 
xvô nghiệm vô nghiệm vô nghiệmvô nghiệmvô nghiệmvô nghiệm

Được ra số vô tỉ nều cần mk gửi cho, ~~ hại não thật sự ~~ 

29 tháng 10 2017

)2+3(x+1)2{7x2−22x+28=(2x−1)2+3(x−3)27x2+8x+13=(2x−1)2+3(x+2)231x2+14x+4=7(2x−1)2+3(x+1)2


Do đó: 

VT≥3–√|3−x|+3–√|x+2|+3–√|x+1|≥3–√(3−x)+3–√(x+2)+3–√(x+1)=33–√(x+2)VT≥3|3−x|+3|x+2|+3|x+1|≥3(3−x)+3(x+2)+3(x+1)=33(x+2)

20 tháng 8 2020

to gefhfhdgtggg

GGGGGG

GGGGG

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

GG

G

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

G

GG

GGGGG

G

G

G

G

G

G

G

GGGGG

G

G

GG

GG

GG

G

G

G

GGG

G

G

GG

G

GGG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

GG

G

G

GG

F

E

RE

R

ER

\\\\\\]

YYYYYYYYY

CMMCMMCMMCMMCMMMCMCMMCMCMCMC

N

G

U

V

L

AHIHI

24 tháng 7 2018

đề sai rồi bạn ạ

24 tháng 7 2018

Đề ko sai đau bạn