Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{2}{x\left(x-2\right)}=\dfrac{1}{x}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\left(kTM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-1\)
Ta có: \(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
\(\Leftrightarrow x\left(x+2\right)-2=x-2\)
\(\Leftrightarrow x^2+2x-x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
hay x=-1
a: Ta có: \(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=\dfrac{-7}{x+2}\)
\(\Leftrightarrow3-\left(x+2\right)=-7\left(x-1\right)\)
\(\Leftrightarrow3-x-2+7x-7=0\)
\(\Leftrightarrow6x-6=0\)
hay x=1(loại
b: Ta có: \(\dfrac{2}{-x^2+6x-8}-\dfrac{x-1}{x-2}=\dfrac{x+3}{x-4}\)
\(\Leftrightarrow\dfrac{-2}{\left(x-2\right)\left(x-4\right)}-\dfrac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}\)
Suy ra: \(-2-x^2+5x-4=x^2+x-6\)
\(\Leftrightarrow-x^2+5x-6-x^2-x+6=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)
\(\dfrac{3}{x^2+x-2}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{\left(x^2-x\right)+\left(2x-2\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{x\left(x-1\right)+2\left(x-1\right)}-\dfrac{1}{x-1}=-\dfrac{7}{x+2}\)
\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{1}{x-1}+\dfrac{7}{x+2}=0\)
\(\Rightarrow\dfrac{3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-1\right)}+\dfrac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{3-\left(x+2\right)+7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Rightarrow3-x-2+7x-7=0\)
\(\Rightarrow6x-6=0\)
\(\Rightarrow x=1\)
a: Ta có: \(2x+3>1-x\)
\(\Leftrightarrow3x>-2\)
hay \(x>-\dfrac{2}{3}\)
b: Ta có: \(15-2\left(x-3\right)< -2x+5\)
\(\Leftrightarrow15-2x+6+2x-5< 0\)
\(\Leftrightarrow16< 0\left(vôlý\right)\)
c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)
\(\Leftrightarrow-5x\le-1\)
hay \(x\ge\dfrac{1}{5}\)
d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)
\(\Leftrightarrow8x+4-6+6x\ge12-3x\)
\(\Leftrightarrow14x+3x\ge12+2=14\)
\(\Leftrightarrow x\ge\dfrac{14}{17}\)
e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
\(\Leftrightarrow6x+12+4x-8< 6x-9\)
\(\Leftrightarrow4x< -9+8-12=-13\)
hay \(x< -\dfrac{13}{4}\)
f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)
\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)
\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)
\(\Leftrightarrow4x>8\)
hay x>2
g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)
\(\Leftrightarrow2x^2\le1\)
\(\Leftrightarrow x^2\le\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1).
Từ điều kiện : Với \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\);
\(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>0\)
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.
Điều kiện xác định của pt : \(\hept{\begin{cases}\frac{x^3+1}{x+3}\ge0\\x+1\ge0\\x+3\ge0\end{cases}}\) \(\Leftrightarrow x\ge-1\)
Ta có : \(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+\sqrt{x+1}.\sqrt{x+3}=\sqrt{x^2-x+1}.\sqrt{x+3}+\left(x+3\right)\)
\(\Leftrightarrow\sqrt{x^2-x+1}\left(\sqrt{x+1}-\sqrt{x+3}\right)+\sqrt{x+3}\left(\sqrt{x+1}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x+3}\right)\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-\sqrt{x+3}=0\\\sqrt{x^2-x+1}+\sqrt{x+3}=0\end{cases}}\)
- Nếu \(\sqrt{x+1}-\sqrt{x+3}=0\Rightarrow x+1=x+3\Leftrightarrow1=3\)(vô lí - loại)
- Nếu \(\sqrt{x^2-x+1}+\sqrt{x+3}=0\)(1). So sánh từ điều kiện : Với mọi \(x\ge-1\)thì \(\sqrt{x+3}\ge\sqrt{2}>0\), \(\sqrt{x^2-x+1}=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{\sqrt{3}}{2}>\)với mọi x
Do đó pt (1) vô nghiệm.
Vậy pt ban đầu vô nghiệm.
Ta có: \(\dfrac{3}{1-x^2}-\dfrac{1}{x+1}=\dfrac{2}{x^3-x^2-x+1}\)
\(\Leftrightarrow\dfrac{-3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{2}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)}=\dfrac{2}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(\Leftrightarrow-\left(x^2-x+2x-2\right)=2\)
\(\Leftrightarrow x^2+x-2=-2\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}