Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT=(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=9x+7 (*)
thay (*) vào VT của pt đầu ta đc
=>9x+7=17
=>9x=10
=>x=\(\frac{10}{9}\)
Đặt a = x2 + 3x - 4 ; b = 2x2 - 5x + 3
=> 3x2 - 2x - 1 = a + b
khi đó phương trình đã cho có dạng: a3 + b3 = (a+ b)3
=> a3 + b3 = a3 + b3 + 3ab(a + b) => 3ab (a+b) = 0 => a= 0 hoặc b = 0 hoặc a = -b
Nếu a = 0 => x2 + 3x - 4 = 0 => x2 + 4x- x - 4 = 0 => (x - 1)(x + 4) = 0 => x = 1; -4
Nếu b = 0 => 2x2 - 5x + 3 = 0 => 2x2 - 2x - 3x + 3 = 0 => (2x-3)(x - 1) = 0 => x = 3/2; 1
Nếu a = - b => - (2x2 - 5x + 3) = x2 + 3x - 4 => 3x2 - 2x - 1 = 0 => 3x2 - 3x + x - 1 = 0 => (3x + 1)(x - 1) = 0 => x = -1/3; 1
Vậy x = 1; 3/2; -1/3; -4
Pt ⇔4x2+x+3+4xx+3−−−−√+2x−1+1−22x−1−−−−−√=0⇔(2x−x+3−−−−√)2−√−1)2=0⇔x=1⇔4x2+x+3+4xx+3+2x−1+1−22x−1=0⇔(2x−x+3)2+(2x−1−1)2=0⇔x=1
\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)
<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)
<=> \(47x\ge8\)
<=> \(x\ge\frac{8}{47}\)
- \(\left(2x+5\right)^2=\left(x+2\right)^2\Leftrightarrow\left(2x+5+x+2\right)\left(2x+5-x-2\right)=0\)\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{3}\\x=-3\end{cases}}\)
- \(x^2-5x+6=0\Leftrightarrow x^2-6x+x-6=0\Leftrightarrow x\left(x-6\right)+\left(x-6\right)=0\)\(\left(x+1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-1\end{cases}}\)
- \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\Leftrightarrow\)\(x=0\)hoặc \(x=\frac{1}{2}\)hoặc \(x=-3\)
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(\Leftrightarrow x\left(x^3+1\right)-x\left(x^3-1\right)=3\)
=>2x=3
hay x=3/2
(x-1)3+(2-x)(4+2x+x2)+3x(x+2)=17
x3 - 3. x2 .1 + 3.x.12 + 13 + 8 + 4x + 2x2 - 4x - 2x2 - x3 + 3x2 + 6x = 17
x3 - 3x2 + 3x + 1 + 8 + 4+ 2x2 - 4x - 2x2 - x2 + 3x3 + 6x = 17
( x3 - x3 ) ( -3x2 + 3x2 + 2x2 - 2x2 ) (3x + 4x - 4x) (1+8+4) = 17
3x . 13 = 17
3x = 17/13
x = 17/13 : 3
x = 17/39
Ko bt đúng hay sai nữa. Nếu sai thì mấy pn sửa lại giúp mk nha