K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

NV
12 tháng 6 2020

\(\Leftrightarrow\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}=9-\left(x-1\right)^2\)

Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\sqrt{3\left(x-1\right)^2+16}\ge\sqrt{16}=4\)

\(\sqrt{\left(x-1\right)^2+25}\ge\sqrt{25}=5\)

\(\Rightarrow VT\ge4+5=9\)

\(VP=9-\left(x-1\right)^2\le9\le VT\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe

30 tháng 12 2016

x=11.94685508 nha 

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải 

8 tháng 7 2019

ĐK: \(3x^2-2x-3\ge0\)(1)

Đặt : \(\sqrt{3x^2-2x-3}=t\left(t\ge0\right)\)

Ta có : \(3x^2-2x-3=t^2\Leftrightarrow3x^2=t^2+2x+3\)

Thế vào ta có phương trình :

\(t^2+2x+3+3x+2=\left(x+6\right).t\)

<=> \(t^2-\left(x+6\right)t+5x+5=0\)

<=> \(\left(t^2-\left(x+1\right)t\right)-\left(5t-5\left(x+1\right)\right)=0\)

<=> \(t\left(t-x-1\right)-5\left(t-x-1\right)=0\)

<=> \(\left(t-x-1\right)\left(t-5\right)=0\)

<=> \(\orbr{\begin{cases}t-x-1=0\\t-5=0\end{cases}}\)

Với \(t-x-1=0\Leftrightarrow t=x+1\)

Ta có phương trình: \(\sqrt{3x^2-2x-3}=x+1\)

<=> \(\hept{\begin{cases}x+1\ge0\\3x^2-2x-3=x^2+2x+1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge-1\\x^2-2x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)( thỏa mãn đk (1))

Với \(t-5=0\Leftrightarrow t=5\)

Ta có phương trình : \(\sqrt{3x^2-2x-3}=5\Leftrightarrow3x^2-2x-28=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1-\sqrt{85}}{3}\\x=\frac{1+\sqrt{85}}{3}\end{cases}}\)( tm)

Vậy : ....

8 tháng 7 2019

Đặt t = √(3x² - 2x - 3) ≥ 0 (ĐK(*) => 3x² + 3x + 2 = (3x² - 2x - 3) + 5(x + 1) = t² + 5(x + 1) 

Thay vào pt ta có:
t² + 5(x + 1) = (x + 6)t 
<=> t² - t(x + 1) - 5t + 5(x + 1) = 0 
<=> t(t - x - 1) - 5(t - x - 1) = 5 
<=> (t - 5)(t - x - 1) = 0 
TH1 t - 5 = 0 <=> t = 5 (thỏa mãn đk (*) => 3x² - 2x - 3 = 25

<=> 9x² - 6x + 1 = 85

<=> (3x - 1)² = 85

<=> 3x - 1 = ± √85

<=> x = (1/3)(1 ± √85) 
TH2 t - x - 1 = 0 <=> t = x + 1 => 3x² - 2x - 3 = (x + 1)² <=> x² - 2x + 1 = 3 <=> (x - 1)² = 3 <=> x - 1 = ± √3 <=> x = 1 ± √3

=> t = 2 ± √3 > 0 (thỏa mãn Đk (*)